Mercurial > hg > octave-nkf
view scripts/plot/draw/shrinkfaces.m @ 20830:b65888ec820e draft default tip gccjit
dmalcom gcc jit import
author | Stefan Mahr <dac922@gmx.de> |
---|---|
date | Fri, 27 Feb 2015 16:59:36 +0100 |
parents | e9f89866074c |
children |
line wrap: on
line source
## Copyright (C) 2012-2015 Martin Helm ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} shrinkfaces (@var{p}, @var{sf}) ## @deftypefnx {Function File} {@var{nfv} =} shrinkfaces (@var{p}, @var{sf}) ## @deftypefnx {Function File} {@var{nfv} =} shrinkfaces (@var{fv}, @var{sf}) ## @deftypefnx {Function File} {@var{nfv} =} shrinkfaces (@var{f}, @var{v}, @var{sf}) ## @deftypefnx {Function File} {[@var{nf}, @var{nv}] =} shrinkfaces (@dots{}) ## ## Reduce the size of faces in a patch by the shrink factor @var{sf}. ## ## The patch object can be specified by a graphics handle (@var{p}), a patch ## structure (@var{fv}) with the fields @qcode{"faces"} and @qcode{"vertices"}, ## or as two separate matrices (@var{f}, @var{v}) of faces and vertices. ## ## The shrink factor @var{sf} is a positive number specifying the percentage ## of the original area the new face will occupy. If no factor is given the ## default is 0.3 (a reduction to 30% of the original size). A factor greater ## than 1.0 will result in the expansion of faces. ## ## Given a patch handle as the first input argument and no output parameters, ## perform the shrinking of the patch faces in place and redraw the patch. ## ## If called with one output argument, return a structure with fields ## @qcode{"faces"}, @qcode{"vertices"}, and @qcode{"facevertexcdata"} ## containing the data after shrinking. This structure can be used directly ## as an input argument to the @code{patch} function. ## ## @strong{Caution:}: Performing the shrink operation on faces which are not ## convex can lead to undesirable results. ## ## Example: a triangulated 3/4 circle and the corresponding shrunken version. ## ## @example ## @group ## [phi r] = meshgrid (linspace (0, 1.5*pi, 16), linspace (1, 2, 4)); ## tri = delaunay (phi(:), r(:)); ## v = [r(:).*sin(phi(:)) r(:).*cos(phi(:))]; ## clf () ## p = patch ("Faces", tri, "Vertices", v, "FaceColor", "none"); ## fv = shrinkfaces (p); ## patch (fv) ## axis equal ## grid on ## @end group ## @end example ## ## @seealso{patch} ## @end deftypefn ## Author: Martin Helm <martin@mhelm.de> function [nf, nv] = shrinkfaces (varargin) if (nargin < 1 || nargin > 3 || nargout > 2) print_usage (); endif sf = 0.3; colors = []; p = varargin{1}; if (isscalar (p) && ishandle (p) && nargin < 3 && strcmp (get (p, "type"), "patch")) faces = get (p, "Faces"); vertices = get (p, "Vertices"); colors = get (p, "FaceVertexCData"); if (nargin == 2) sf = varargin{2}; endif elseif (isstruct (p) && nargin < 3) faces = p.faces; vertices = p.vertices; if (isfield (p, "facevertexcdata")) colors = p.facevertexcdata; endif if (nargin == 2) sf = varargin{2}; endif elseif (ismatrix (p) && nargin >= 2 && ismatrix (varargin{2})) faces = p; vertices = varargin{2}; if (nargin == 3) sf = varargin{3}; endif else print_usage (); endif if (! isscalar (sf) || sf <= 0) error ("shrinkfaces: scale factor must be a positive scalar"); endif nc = columns (vertices); if (nc < 2 || nc > 3) error ("shrinkfaces: only 2-D and 3-D patches are supported"); endif m = columns (faces); if (m < 3) error ("shrinkfaces: faces must consist of at least 3 vertices"); endif v = vertices(faces'(:), :); if (isempty (colors) || rows (colors) == rows (faces)) c = colors; elseif (rows (colors) == rows (vertices)) c = colors(faces'(:), :); else c = []; # Discard inconsistent color data. endif sv = rows (v); ## We have to deal with a possibly very large number of vertices, so use ## sparse as midpoint (1/m, ..., 1/m) in generalized barycentric coordinates. midpoints = full (kron (speye (sv / m), ones (m, m) / m) * sparse (v)); v = sqrt (sf) * (v - midpoints) + midpoints; f = reshape (1:sv, m, sv / m)'; switch (nargout) case 0 if (ishandle (p)) ## avoid exceptions set (p, "FaceVertexCData", [], "CData", []); set (p, "Vertices", v, "Faces", f, "FaceVertexCData", c); else nf = struct ("faces", f, "vertices", v, "facevertexcdata", c); endif case 1 nf = struct ("faces", f, "vertices", v, "facevertexcdata", c); case 2 nf = f; nv = v; endswitch endfunction %!demo %! clf; %! faces = [1 2 3; 1 3 4]; %! vertices = [0 0; 1 0; 1 1; 0 1]; %! patch ('Faces', faces, 'Vertices', vertices, 'FaceColor', 'none'); %! fv = shrinkfaces (faces, vertices, 0.25); %! patch (fv); %! axis equal; %!demo %! clf; %! faces = [1 2 3 4; 5 6 7 8]; %! vertices = [0 0; 1 0; 2 1; 1 1; 2 0; 3 0; 4 1; 3.5 1]; %! patch ('Faces', faces, 'Vertices', vertices, 'FaceColor', 'none'); %! fv = shrinkfaces (faces, vertices, 0.25); %! patch (fv); %! axis equal; %! grid on; %!demo %! clf; %! faces = [1 2 3 4]; %! vertices = [-1 2; 0 0; 1 2; 0 1]; %! patch ('Faces', faces, 'Vertices', vertices, 'FaceColor', 'none'); %! fv = shrinkfaces (faces, vertices, 0.25); %! patch (fv); %! axis equal; %! grid on; %! title 'faces which are not convex are clearly not allowed' %!demo %! clf; %! [phi r] = meshgrid (linspace (0, 1.5*pi, 16), linspace (1, 2, 4)); %! tri = delaunay (phi(:), r(:)); %! v = [r(:).*sin(phi(:)) r(:).*cos(phi(:))]; %! p = patch ('Faces', tri, 'Vertices', v, 'FaceColor', 'none'); %! fv = shrinkfaces (p); %! patch (fv); %! axis equal; %! grid on; %!demo %! clf; %! N = 10; % N intervals per axis %! [x, y, z] = meshgrid (linspace (-4,4,N+1)); %! val = x.^3 + y.^3 + z.^3; %! fv = isosurface (x, y, z, val, 3, z); %! %! p = patch ('Faces', fv.faces, 'Vertices', fv.vertices, 'FaceVertexCData', ... %! fv.facevertexcdata, 'FaceColor', 'interp', 'EdgeColor', 'black'); %! axis equal; %! view (115, 30); %! drawnow; %! shrinkfaces (p, 0.6); %!shared faces, vertices, nfv, nfv2 %! faces = [1 2 3]; %! vertices = [0 0 0; 1 0 0; 1 1 0]; %! nfv = shrinkfaces (faces, vertices, 0.7); %! nfv2 = shrinkfaces (nfv, 1/0.7); %!assert (isfield (nfv, "faces")) %!assert (isfield (nfv, "vertices")) %!assert (size (nfv.faces), [1 3]) %!assert (size (nfv.vertices), [3 3]) %!assert (norm (nfv2.vertices - vertices), 0, 2*eps) ## Test input validation %!error shrinkfaces () %!error shrinkfaces (1,2,3,4) %!error [a,b,c] = shrinkfaces (1) %!error <scale factor must be a positive scalar> shrinkfaces (nfv, ones (2)) %!error <scale factor must be a positive scalar> shrinkfaces (nfv, 0) %!error <only 2-D and 3-D patches are supported> shrinkfaces (faces, ones (3,1)) %!error <only 2-D and 3-D patches are supported> shrinkfaces (faces, ones (3,4)) %!error <faces must consist of at least 3 vertices> shrinkfaces (faces(1:2), vertices)