Mercurial > hg > octave-nkf
view scripts/statistics/distributions/tinv.m @ 20830:b65888ec820e draft default tip gccjit
dmalcom gcc jit import
author | Stefan Mahr <dac922@gmx.de> |
---|---|
date | Fri, 27 Feb 2015 16:59:36 +0100 |
parents | d9341b422488 |
children |
line wrap: on
line source
## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2015 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} tinv (@var{x}, @var{n}) ## For each element of @var{x}, compute the quantile (the inverse of the CDF) ## at @var{x} of the t (Student) distribution with @var{n} ## degrees of freedom. ## ## This function is analogous to looking in a table for the t-value of a ## single-tailed distribution. ## @end deftypefn ## For very large n, the "correct" formula does not really work well, ## and the quantiles of the standard normal distribution are used ## directly. ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: Quantile function of the t distribution function inv = tinv (x, n) if (nargin != 2) print_usage (); endif if (! isscalar (n)) [retval, x, n] = common_size (x, n); if (retval > 0) error ("tinv: X and N must be of common size or scalars"); endif endif if (iscomplex (x) || iscomplex (n)) error ("tinv: X and N must not be complex"); endif if (isa (x, "single") || isa (n, "single")) inv = NaN (size (x), "single"); else inv = NaN (size (x)); endif k = (x == 0) & (n > 0); inv(k) = -Inf; k = (x == 1) & (n > 0); inv(k) = Inf; if (isscalar (n)) k = (x > 0) & (x < 1); if ((n > 0) && (n < 10000)) inv(k) = (sign (x(k) - 1/2) .* sqrt (n * (1 ./ betainv (2*min (x(k), 1 - x(k)), n/2, 1/2) - 1))); elseif (n >= 10000) ## For large n, use the quantiles of the standard normal inv(k) = stdnormal_inv (x(k)); endif else k = (x > 0) & (x < 1) & (n > 0) & (n < 10000); inv(k) = (sign (x(k) - 1/2) .* sqrt (n(k) .* (1 ./ betainv (2*min (x(k), 1 - x(k)), n(k)/2, 1/2) - 1))); ## For large n, use the quantiles of the standard normal k = (x > 0) & (x < 1) & (n >= 10000); inv(k) = stdnormal_inv (x(k)); endif endfunction %!shared x %! x = [-1 0 0.5 1 2]; %!assert (tinv (x, ones (1,5)), [NaN -Inf 0 Inf NaN]) %!assert (tinv (x, 1), [NaN -Inf 0 Inf NaN], eps) %!assert (tinv (x, [1 0 NaN 1 1]), [NaN NaN NaN Inf NaN], eps) %!assert (tinv ([x(1:2) NaN x(4:5)], 1), [NaN -Inf NaN Inf NaN]) ## Test class of input preserved %!assert (tinv ([x, NaN], 1), [NaN -Inf 0 Inf NaN NaN], eps) %!assert (tinv (single ([x, NaN]), 1), single ([NaN -Inf 0 Inf NaN NaN]), eps ("single")) %!assert (tinv ([x, NaN], single (1)), single ([NaN -Inf 0 Inf NaN NaN]), eps ("single")) ## Test input validation %!error tinv () %!error tinv (1) %!error tinv (1,2,3) %!error tinv (ones (3), ones (2)) %!error tinv (ones (2), ones (3)) %!error tinv (i, 2) %!error tinv (2, i)