1993
|
1 // Template array classes |
237
|
2 /* |
|
3 |
2847
|
4 Copyright (C) 1996, 1997 John W. Eaton |
237
|
5 |
|
6 This file is part of Octave. |
|
7 |
|
8 Octave is free software; you can redistribute it and/or modify it |
|
9 under the terms of the GNU General Public License as published by the |
|
10 Free Software Foundation; either version 2, or (at your option) any |
|
11 later version. |
|
12 |
|
13 Octave is distributed in the hope that it will be useful, but WITHOUT |
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
16 for more details. |
|
17 |
|
18 You should have received a copy of the GNU General Public License |
|
19 along with Octave; see the file COPYING. If not, write to the Free |
5307
|
20 Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
|
21 02110-1301, USA. |
237
|
22 |
|
23 */ |
|
24 |
|
25 #ifdef HAVE_CONFIG_H |
1192
|
26 #include <config.h> |
237
|
27 #endif |
|
28 |
1367
|
29 #include <cassert> |
4518
|
30 #include <climits> |
449
|
31 |
3503
|
32 #include <iostream> |
1560
|
33 |
237
|
34 #include "Array.h" |
4517
|
35 #include "Array-flags.h" |
4588
|
36 #include "Array-util.h" |
4517
|
37 #include "Range.h" |
1560
|
38 #include "idx-vector.h" |
|
39 #include "lo-error.h" |
4661
|
40 #include "lo-sstream.h" |
1560
|
41 |
1360
|
42 // One dimensional array class. Handles the reference counting for |
|
43 // all the derived classes. |
237
|
44 |
|
45 template <class T> |
4834
|
46 Array<T>::Array (const Array<T>& a, const dim_vector& dv) |
|
47 : rep (a.rep), dimensions (dv), idx (0), idx_count (0) |
|
48 { |
|
49 rep->count++; |
|
50 |
|
51 if (a.numel () < dv.numel ()) |
|
52 (*current_liboctave_error_handler) |
|
53 ("Array::Array (const Array&, const dim_vector&): dimension mismatch"); |
|
54 } |
|
55 |
|
56 template <class T> |
1619
|
57 Array<T>::~Array (void) |
|
58 { |
|
59 if (--rep->count <= 0) |
|
60 delete rep; |
|
61 |
|
62 delete [] idx; |
4513
|
63 } |
|
64 |
4532
|
65 template <class T> |
|
66 Array<T> |
|
67 Array<T>::squeeze (void) const |
|
68 { |
|
69 Array<T> retval = *this; |
|
70 |
4929
|
71 if (ndims () > 2) |
4532
|
72 { |
4929
|
73 bool dims_changed = false; |
|
74 |
|
75 dim_vector new_dimensions = dimensions; |
|
76 |
|
77 int k = 0; |
|
78 |
|
79 for (int i = 0; i < ndims (); i++) |
4759
|
80 { |
4929
|
81 if (dimensions(i) == 1) |
|
82 dims_changed = true; |
|
83 else |
|
84 new_dimensions(k++) = dimensions(i); |
|
85 } |
|
86 |
|
87 if (dims_changed) |
|
88 { |
|
89 switch (k) |
|
90 { |
|
91 case 0: |
|
92 new_dimensions = dim_vector (1, 1); |
|
93 break; |
|
94 |
|
95 case 1: |
4759
|
96 { |
5275
|
97 octave_idx_type tmp = new_dimensions(0); |
4929
|
98 |
|
99 new_dimensions.resize (2); |
|
100 |
4759
|
101 new_dimensions(0) = tmp; |
|
102 new_dimensions(1) = 1; |
|
103 } |
4929
|
104 break; |
|
105 |
|
106 default: |
|
107 new_dimensions.resize (k); |
|
108 break; |
|
109 } |
4759
|
110 } |
4532
|
111 |
5047
|
112 // XXX FIXME XXX -- it would be better if we did not have to do |
|
113 // this, so we could share the data while still having different |
|
114 // dimension vectors. |
|
115 |
4532
|
116 retval.make_unique (); |
|
117 |
|
118 retval.dimensions = new_dimensions; |
|
119 } |
|
120 |
|
121 return retval; |
|
122 } |
|
123 |
4513
|
124 // A guess (should be quite conservative). |
|
125 #define MALLOC_OVERHEAD 1024 |
|
126 |
|
127 template <class T> |
5275
|
128 octave_idx_type |
|
129 Array<T>::get_size (octave_idx_type r, octave_idx_type c) |
4513
|
130 { |
|
131 // XXX KLUGE XXX |
|
132 |
|
133 // If an allocation of an array with r * c elements of type T |
|
134 // would cause an overflow in the allocator when computing the |
|
135 // size of the allocation, then return a value which, although |
|
136 // not equivalent to the actual request, should be too large for |
|
137 // most current hardware, but not so large to cause the |
|
138 // allocator to barf on computing retval * sizeof (T). |
|
139 |
|
140 static int nl; |
|
141 static double dl |
5275
|
142 = frexp (static_cast<double> |
|
143 (std::numeric_limits<octave_idx_type>::max() - MALLOC_OVERHEAD) / sizeof (T), &nl); |
4513
|
144 |
|
145 // This value should be an integer. If we return this value and |
|
146 // things work the way we expect, we should be paying a visit to |
|
147 // new_handler in no time flat. |
5275
|
148 static octave_idx_type max_items = static_cast<octave_idx_type> (ldexp (dl, nl)); // = dl.2^nl |
4513
|
149 |
|
150 int nr, nc; |
5275
|
151 double dr = frexp (static_cast<double> (r), &nr); // r = dr * 2^nr |
|
152 double dc = frexp (static_cast<double> (c), &nc); // c = dc * 2^nc |
4513
|
153 |
|
154 int nt = nr + nc; |
|
155 double dt = dr * dc; |
|
156 |
4532
|
157 if (dt < 0.5) |
4513
|
158 { |
|
159 nt--; |
|
160 dt *= 2; |
|
161 } |
|
162 |
5275
|
163 // if (r*c) below limit, then return r*c, otherwise return TOO BIG num! |
4513
|
164 return (nt < nl || (nt == nl && dt < dl)) ? r * c : max_items; |
237
|
165 } |
|
166 |
|
167 template <class T> |
5275
|
168 octave_idx_type |
|
169 Array<T>::get_size (octave_idx_type r, octave_idx_type c, octave_idx_type p) |
237
|
170 { |
4513
|
171 // XXX KLUGE XXX |
|
172 |
|
173 // If an allocation of an array with r * c * p elements of type T |
|
174 // would cause an overflow in the allocator when computing the |
|
175 // size of the allocation, then return a value which, although |
|
176 // not equivalent to the actual request, should be too large for |
|
177 // most current hardware, but not so large to cause the |
|
178 // allocator to barf on computing retval * sizeof (T). |
|
179 |
|
180 static int nl; |
|
181 static double dl |
|
182 = frexp (static_cast<double> |
5275
|
183 (std::numeric_limits<octave_idx_type>::max() - MALLOC_OVERHEAD) / sizeof (T), &nl); |
4513
|
184 |
|
185 // This value should be an integer. If we return this value and |
|
186 // things work the way we expect, we should be paying a visit to |
|
187 // new_handler in no time flat. |
5275
|
188 static octave_idx_type max_items = static_cast<octave_idx_type> (ldexp (dl, nl)); |
4513
|
189 |
|
190 int nr, nc, np; |
|
191 double dr = frexp (static_cast<double> (r), &nr); |
|
192 double dc = frexp (static_cast<double> (c), &nc); |
|
193 double dp = frexp (static_cast<double> (p), &np); |
|
194 |
|
195 int nt = nr + nc + np; |
|
196 double dt = dr * dc * dp; |
|
197 |
4532
|
198 if (dt < 0.5) |
659
|
199 { |
4513
|
200 nt--; |
|
201 dt *= 2; |
237
|
202 |
4532
|
203 if (dt < 0.5) |
|
204 { |
|
205 nt--; |
|
206 dt *= 2; |
|
207 } |
659
|
208 } |
1619
|
209 |
4513
|
210 return (nt < nl || (nt == nl && dt < dl)) ? r * c * p : max_items; |
237
|
211 } |
|
212 |
|
213 template <class T> |
5275
|
214 octave_idx_type |
4513
|
215 Array<T>::get_size (const dim_vector& ra_idx) |
237
|
216 { |
4513
|
217 // XXX KLUGE XXX |
|
218 |
|
219 // If an allocation of an array with r * c elements of type T |
|
220 // would cause an overflow in the allocator when computing the |
|
221 // size of the allocation, then return a value which, although |
|
222 // not equivalent to the actual request, should be too large for |
|
223 // most current hardware, but not so large to cause the |
|
224 // allocator to barf on computing retval * sizeof (T). |
|
225 |
|
226 static int nl; |
|
227 static double dl |
|
228 = frexp (static_cast<double> |
5275
|
229 (std::numeric_limits<octave_idx_type>::max() - MALLOC_OVERHEAD) / sizeof (T), &nl); |
4513
|
230 |
|
231 // This value should be an integer. If we return this value and |
|
232 // things work the way we expect, we should be paying a visit to |
|
233 // new_handler in no time flat. |
|
234 |
5275
|
235 static octave_idx_type max_items = static_cast<octave_idx_type> (ldexp (dl, nl)); |
|
236 |
|
237 octave_idx_type retval = max_items; |
4513
|
238 |
|
239 int n = ra_idx.length (); |
|
240 |
|
241 int nt = 0; |
|
242 double dt = 1; |
|
243 |
|
244 for (int i = 0; i < n; i++) |
237
|
245 { |
4513
|
246 int nra_idx; |
|
247 double dra_idx = frexp (static_cast<double> (ra_idx(i)), &nra_idx); |
|
248 |
|
249 nt += nra_idx; |
|
250 dt *= dra_idx; |
4532
|
251 |
|
252 if (dt < 0.5) |
|
253 { |
|
254 nt--; |
|
255 dt *= 2; |
|
256 } |
237
|
257 } |
|
258 |
4513
|
259 if (nt < nl || (nt == nl && dt < dl)) |
|
260 { |
|
261 retval = 1; |
|
262 |
|
263 for (int i = 0; i < n; i++) |
|
264 retval *= ra_idx(i); |
|
265 } |
|
266 |
|
267 return retval; |
237
|
268 } |
|
269 |
4513
|
270 #undef MALLOC_OVERHEAD |
|
271 |
237
|
272 template <class T> |
5275
|
273 octave_idx_type |
|
274 Array<T>::compute_index (const Array<octave_idx_type>& ra_idx) const |
237
|
275 { |
5275
|
276 octave_idx_type retval = -1; |
4513
|
277 |
|
278 int n = dimensions.length (); |
|
279 |
|
280 if (n > 0 && n == ra_idx.length ()) |
237
|
281 { |
4513
|
282 retval = ra_idx(--n); |
237
|
283 |
4513
|
284 while (--n >= 0) |
|
285 { |
|
286 retval *= dimensions(n); |
|
287 retval += ra_idx(n); |
|
288 } |
|
289 } |
|
290 else |
|
291 (*current_liboctave_error_handler) |
|
292 ("Array<T>::compute_index: invalid ra_idxing operation"); |
237
|
293 |
4513
|
294 return retval; |
237
|
295 } |
|
296 |
2049
|
297 template <class T> |
|
298 T |
5275
|
299 Array<T>::range_error (const char *fcn, octave_idx_type n) const |
2049
|
300 { |
2109
|
301 (*current_liboctave_error_handler) ("%s (%d): range error", fcn, n); |
2049
|
302 return T (); |
|
303 } |
|
304 |
|
305 template <class T> |
|
306 T& |
5275
|
307 Array<T>::range_error (const char *fcn, octave_idx_type n) |
2049
|
308 { |
2109
|
309 (*current_liboctave_error_handler) ("%s (%d): range error", fcn, n); |
2049
|
310 static T foo; |
|
311 return foo; |
|
312 } |
|
313 |
3933
|
314 template <class T> |
4513
|
315 T |
5275
|
316 Array<T>::range_error (const char *fcn, octave_idx_type i, octave_idx_type j) const |
4513
|
317 { |
|
318 (*current_liboctave_error_handler) |
|
319 ("%s (%d, %d): range error", fcn, i, j); |
|
320 return T (); |
|
321 } |
|
322 |
|
323 template <class T> |
|
324 T& |
5275
|
325 Array<T>::range_error (const char *fcn, octave_idx_type i, octave_idx_type j) |
4513
|
326 { |
|
327 (*current_liboctave_error_handler) |
|
328 ("%s (%d, %d): range error", fcn, i, j); |
|
329 static T foo; |
|
330 return foo; |
|
331 } |
|
332 |
|
333 template <class T> |
|
334 T |
5275
|
335 Array<T>::range_error (const char *fcn, octave_idx_type i, octave_idx_type j, octave_idx_type k) const |
4513
|
336 { |
|
337 (*current_liboctave_error_handler) |
|
338 ("%s (%d, %d, %d): range error", fcn, i, j, k); |
|
339 return T (); |
|
340 } |
|
341 |
|
342 template <class T> |
|
343 T& |
5275
|
344 Array<T>::range_error (const char *fcn, octave_idx_type i, octave_idx_type j, octave_idx_type k) |
4513
|
345 { |
|
346 (*current_liboctave_error_handler) |
|
347 ("%s (%d, %d, %d): range error", fcn, i, j, k); |
|
348 static T foo; |
|
349 return foo; |
|
350 } |
|
351 |
|
352 template <class T> |
|
353 T |
|
354 Array<T>::range_error (const char *fcn, const Array<int>& ra_idx) const |
|
355 { |
4661
|
356 OSSTREAM buf; |
|
357 |
|
358 buf << fcn << " ("; |
|
359 |
5275
|
360 octave_idx_type n = ra_idx.length (); |
4661
|
361 |
|
362 if (n > 0) |
|
363 buf << ra_idx(0); |
|
364 |
5275
|
365 for (octave_idx_type i = 1; i < n; i++) |
4661
|
366 buf << ", " << ra_idx(i); |
|
367 |
|
368 buf << "): range error"; |
|
369 |
|
370 buf << OSSTREAM_ENDS; |
|
371 |
|
372 (*current_liboctave_error_handler) (OSSTREAM_C_STR (buf)); |
|
373 |
|
374 OSSTREAM_FREEZE (buf); |
4513
|
375 |
|
376 return T (); |
|
377 } |
|
378 |
|
379 template <class T> |
|
380 T& |
|
381 Array<T>::range_error (const char *fcn, const Array<int>& ra_idx) |
|
382 { |
4661
|
383 OSSTREAM buf; |
|
384 |
|
385 buf << fcn << " ("; |
|
386 |
5275
|
387 octave_idx_type n = ra_idx.length (); |
4661
|
388 |
|
389 if (n > 0) |
|
390 buf << ra_idx(0); |
|
391 |
5275
|
392 for (octave_idx_type i = 1; i < n; i++) |
4661
|
393 buf << ", " << ra_idx(i); |
|
394 |
|
395 buf << "): range error"; |
|
396 |
|
397 buf << OSSTREAM_ENDS; |
|
398 |
|
399 (*current_liboctave_error_handler) (OSSTREAM_C_STR (buf)); |
|
400 |
|
401 OSSTREAM_FREEZE (buf); |
4513
|
402 |
|
403 static T foo; |
|
404 return foo; |
|
405 } |
|
406 |
|
407 template <class T> |
4567
|
408 Array<T> |
|
409 Array<T>::reshape (const dim_vector& new_dims) const |
|
410 { |
|
411 Array<T> retval; |
|
412 |
|
413 if (dimensions != new_dims) |
|
414 { |
|
415 if (dimensions.numel () == new_dims.numel ()) |
|
416 retval = Array<T> (*this, new_dims); |
|
417 else |
|
418 (*current_liboctave_error_handler) ("reshape: size mismatch"); |
|
419 } |
4916
|
420 else |
|
421 retval = *this; |
4567
|
422 |
|
423 return retval; |
|
424 } |
|
425 |
|
426 template <class T> |
4593
|
427 Array<T> |
5275
|
428 Array<T>::permute (const Array<octave_idx_type>& perm_vec, bool inv) const |
4593
|
429 { |
|
430 Array<T> retval; |
|
431 |
|
432 dim_vector dv = dims (); |
|
433 dim_vector dv_new; |
|
434 |
5148
|
435 int perm_vec_len = perm_vec.length (); |
|
436 |
|
437 if (perm_vec_len < dv.length ()) |
|
438 (*current_liboctave_error_handler) |
|
439 ("%s: invalid permutation vector", inv ? "ipermute" : "permute"); |
|
440 |
|
441 dv_new.resize (perm_vec_len); |
|
442 |
|
443 // Append singleton dimensions as needed. |
|
444 dv.resize (perm_vec_len, 1); |
|
445 |
|
446 const Array<T> tmp = reshape (dv); |
4593
|
447 |
|
448 // Need this array to check for identical elements in permutation array. |
5148
|
449 Array<bool> checked (perm_vec_len, false); |
4593
|
450 |
|
451 // Find dimension vector of permuted array. |
5148
|
452 for (int i = 0; i < perm_vec_len; i++) |
4593
|
453 { |
5275
|
454 octave_idx_type perm_elt = perm_vec.elem (i); |
5148
|
455 |
|
456 if (perm_elt >= perm_vec_len || perm_elt < 0) |
4593
|
457 { |
|
458 (*current_liboctave_error_handler) |
5148
|
459 ("%s: permutation vector contains an invalid element", |
|
460 inv ? "ipermute" : "permute"); |
4593
|
461 |
|
462 return retval; |
|
463 } |
|
464 |
5148
|
465 if (checked.elem(perm_elt)) |
4593
|
466 { |
|
467 (*current_liboctave_error_handler) |
5148
|
468 ("%s: permutation vector cannot contain identical elements", |
|
469 inv ? "ipermute" : "permute"); |
4593
|
470 |
|
471 return retval; |
|
472 } |
|
473 else |
5148
|
474 checked.elem(perm_elt) = true; |
|
475 |
|
476 dv_new(i) = dv(perm_elt); |
4593
|
477 } |
|
478 |
|
479 retval.resize (dv_new); |
|
480 |
|
481 // Index array to the original array. |
5275
|
482 Array<octave_idx_type> old_idx (perm_vec_len, 0); |
4593
|
483 |
|
484 // Number of elements in Array (should be the same for |
|
485 // both the permuted array and original array). |
5275
|
486 octave_idx_type n = retval.length (); |
4593
|
487 |
|
488 // Permute array. |
5275
|
489 for (octave_idx_type i = 0; i < n; i++) |
4593
|
490 { |
|
491 // Get the idx of permuted array. |
5275
|
492 Array<octave_idx_type> new_idx = calc_permutated_idx (old_idx, perm_vec, inv); |
4593
|
493 |
5148
|
494 retval.elem (new_idx) = tmp.elem (old_idx); |
4593
|
495 |
|
496 increment_index (old_idx, dv); |
|
497 } |
|
498 |
|
499 return retval; |
|
500 } |
|
501 |
|
502 template <class T> |
4513
|
503 void |
5275
|
504 Array<T>::resize_no_fill (octave_idx_type n) |
4513
|
505 { |
|
506 if (n < 0) |
|
507 { |
|
508 (*current_liboctave_error_handler) |
|
509 ("can't resize to negative dimension"); |
|
510 return; |
|
511 } |
|
512 |
|
513 if (n == length ()) |
|
514 return; |
|
515 |
|
516 typename Array<T>::ArrayRep *old_rep = rep; |
|
517 const T *old_data = data (); |
5275
|
518 octave_idx_type old_len = length (); |
4513
|
519 |
|
520 rep = new typename Array<T>::ArrayRep (n); |
|
521 |
|
522 dimensions = dim_vector (n); |
|
523 |
4747
|
524 if (n > 0 && old_data && old_len > 0) |
4513
|
525 { |
5275
|
526 octave_idx_type min_len = old_len < n ? old_len : n; |
|
527 |
|
528 for (octave_idx_type i = 0; i < min_len; i++) |
4513
|
529 xelem (i) = old_data[i]; |
|
530 } |
|
531 |
|
532 if (--old_rep->count <= 0) |
|
533 delete old_rep; |
|
534 } |
|
535 |
|
536 template <class T> |
|
537 void |
4587
|
538 Array<T>::resize_no_fill (const dim_vector& dv) |
4513
|
539 { |
5275
|
540 octave_idx_type n = dv.length (); |
|
541 |
|
542 for (octave_idx_type i = 0; i < n; i++) |
4513
|
543 { |
4587
|
544 if (dv(i) < 0) |
4513
|
545 { |
|
546 (*current_liboctave_error_handler) |
|
547 ("can't resize to negative dimension"); |
|
548 return; |
|
549 } |
|
550 } |
|
551 |
4548
|
552 bool same_size = true; |
|
553 |
|
554 if (dimensions.length () != n) |
|
555 { |
|
556 same_size = false; |
|
557 } |
|
558 else |
4513
|
559 { |
5275
|
560 for (octave_idx_type i = 0; i < n; i++) |
4513
|
561 { |
4587
|
562 if (dv(i) != dimensions(i)) |
4548
|
563 { |
|
564 same_size = false; |
|
565 break; |
|
566 } |
4513
|
567 } |
|
568 } |
|
569 |
4548
|
570 if (same_size) |
4513
|
571 return; |
|
572 |
|
573 typename Array<T>::ArrayRep *old_rep = rep; |
|
574 const T *old_data = data (); |
|
575 |
5275
|
576 octave_idx_type ts = get_size (dv); |
4747
|
577 |
|
578 rep = new typename Array<T>::ArrayRep (ts); |
4587
|
579 |
4870
|
580 dim_vector dv_old = dimensions; |
5275
|
581 octave_idx_type dv_old_orig_len = dv_old.length (); |
4587
|
582 dimensions = dv; |
5275
|
583 octave_idx_type ts_old = get_size (dv_old); |
4915
|
584 |
|
585 if (ts > 0 && ts_old > 0 && dv_old_orig_len > 0) |
4513
|
586 { |
5275
|
587 Array<octave_idx_type> ra_idx (dimensions.length (), 0); |
4747
|
588 |
4870
|
589 if (n > dv_old_orig_len) |
4747
|
590 { |
4870
|
591 dv_old.resize (n); |
|
592 |
5275
|
593 for (octave_idx_type i = dv_old_orig_len; i < n; i++) |
4870
|
594 dv_old.elem (i) = 1; |
|
595 } |
|
596 |
5275
|
597 for (octave_idx_type i = 0; i < ts; i++) |
4870
|
598 { |
|
599 if (index_in_bounds (ra_idx, dv_old)) |
|
600 rep->elem (i) = old_data[get_scalar_idx (ra_idx, dv_old)]; |
4747
|
601 |
|
602 increment_index (ra_idx, dimensions); |
|
603 } |
4513
|
604 } |
|
605 |
|
606 if (--old_rep->count <= 0) |
|
607 delete old_rep; |
|
608 } |
|
609 |
|
610 template <class T> |
|
611 void |
5275
|
612 Array<T>::resize_no_fill (octave_idx_type r, octave_idx_type c) |
4513
|
613 { |
|
614 if (r < 0 || c < 0) |
|
615 { |
|
616 (*current_liboctave_error_handler) |
|
617 ("can't resize to negative dimension"); |
|
618 return; |
|
619 } |
|
620 |
4548
|
621 int n = ndims (); |
|
622 |
|
623 if (n == 0) |
|
624 dimensions = dim_vector (0, 0); |
|
625 |
|
626 assert (ndims () == 2); |
|
627 |
4513
|
628 if (r == dim1 () && c == dim2 ()) |
|
629 return; |
|
630 |
|
631 typename Array<T>::ArrayRep *old_rep = Array<T>::rep; |
|
632 const T *old_data = data (); |
|
633 |
5275
|
634 octave_idx_type old_d1 = dim1 (); |
|
635 octave_idx_type old_d2 = dim2 (); |
|
636 octave_idx_type old_len = length (); |
|
637 |
|
638 octave_idx_type ts = get_size (r, c); |
4747
|
639 |
|
640 rep = new typename Array<T>::ArrayRep (ts); |
4513
|
641 |
|
642 dimensions = dim_vector (r, c); |
|
643 |
4747
|
644 if (ts > 0 && old_data && old_len > 0) |
4513
|
645 { |
5275
|
646 octave_idx_type min_r = old_d1 < r ? old_d1 : r; |
|
647 octave_idx_type min_c = old_d2 < c ? old_d2 : c; |
|
648 |
|
649 for (octave_idx_type j = 0; j < min_c; j++) |
|
650 for (octave_idx_type i = 0; i < min_r; i++) |
4513
|
651 xelem (i, j) = old_data[old_d1*j+i]; |
|
652 } |
|
653 |
|
654 if (--old_rep->count <= 0) |
|
655 delete old_rep; |
|
656 } |
|
657 |
|
658 template <class T> |
|
659 void |
5275
|
660 Array<T>::resize_no_fill (octave_idx_type r, octave_idx_type c, octave_idx_type p) |
4513
|
661 { |
|
662 if (r < 0 || c < 0 || p < 0) |
|
663 { |
|
664 (*current_liboctave_error_handler) |
|
665 ("can't resize to negative dimension"); |
|
666 return; |
|
667 } |
|
668 |
4548
|
669 int n = ndims (); |
|
670 |
|
671 if (n == 0) |
|
672 dimensions = dim_vector (0, 0, 0); |
|
673 |
|
674 assert (ndims () == 3); |
|
675 |
4513
|
676 if (r == dim1 () && c == dim2 () && p == dim3 ()) |
|
677 return; |
|
678 |
|
679 typename Array<T>::ArrayRep *old_rep = rep; |
|
680 const T *old_data = data (); |
|
681 |
5275
|
682 octave_idx_type old_d1 = dim1 (); |
|
683 octave_idx_type old_d2 = dim2 (); |
|
684 octave_idx_type old_d3 = dim3 (); |
|
685 octave_idx_type old_len = length (); |
|
686 |
|
687 octave_idx_type ts = get_size (get_size (r, c), p); |
4513
|
688 |
|
689 rep = new typename Array<T>::ArrayRep (ts); |
|
690 |
|
691 dimensions = dim_vector (r, c, p); |
|
692 |
4747
|
693 if (ts > 0 && old_data && old_len > 0) |
4513
|
694 { |
5275
|
695 octave_idx_type min_r = old_d1 < r ? old_d1 : r; |
|
696 octave_idx_type min_c = old_d2 < c ? old_d2 : c; |
|
697 octave_idx_type min_p = old_d3 < p ? old_d3 : p; |
|
698 |
|
699 for (octave_idx_type k = 0; k < min_p; k++) |
|
700 for (octave_idx_type j = 0; j < min_c; j++) |
|
701 for (octave_idx_type i = 0; i < min_r; i++) |
4513
|
702 xelem (i, j, k) = old_data[old_d1*(old_d2*k+j)+i]; |
|
703 } |
|
704 |
|
705 if (--old_rep->count <= 0) |
|
706 delete old_rep; |
|
707 } |
|
708 |
|
709 template <class T> |
|
710 void |
5275
|
711 Array<T>::resize_and_fill (octave_idx_type n, const T& val) |
4513
|
712 { |
|
713 if (n < 0) |
|
714 { |
|
715 (*current_liboctave_error_handler) |
|
716 ("can't resize to negative dimension"); |
|
717 return; |
|
718 } |
|
719 |
|
720 if (n == length ()) |
|
721 return; |
|
722 |
|
723 typename Array<T>::ArrayRep *old_rep = rep; |
|
724 const T *old_data = data (); |
5275
|
725 octave_idx_type old_len = length (); |
4513
|
726 |
|
727 rep = new typename Array<T>::ArrayRep (n); |
|
728 |
|
729 dimensions = dim_vector (n); |
|
730 |
4747
|
731 if (n > 0) |
4513
|
732 { |
5275
|
733 octave_idx_type min_len = old_len < n ? old_len : n; |
4747
|
734 |
|
735 if (old_data && old_len > 0) |
|
736 { |
5275
|
737 for (octave_idx_type i = 0; i < min_len; i++) |
4747
|
738 xelem (i) = old_data[i]; |
|
739 } |
|
740 |
5275
|
741 for (octave_idx_type i = old_len; i < n; i++) |
4747
|
742 xelem (i) = val; |
4513
|
743 } |
|
744 |
|
745 if (--old_rep->count <= 0) |
|
746 delete old_rep; |
|
747 } |
|
748 |
|
749 template <class T> |
|
750 void |
5275
|
751 Array<T>::resize_and_fill (octave_idx_type r, octave_idx_type c, const T& val) |
4513
|
752 { |
|
753 if (r < 0 || c < 0) |
|
754 { |
|
755 (*current_liboctave_error_handler) |
|
756 ("can't resize to negative dimension"); |
|
757 return; |
|
758 } |
|
759 |
4548
|
760 if (ndims () == 0) |
|
761 dimensions = dim_vector (0, 0); |
|
762 |
|
763 assert (ndims () == 2); |
|
764 |
4513
|
765 if (r == dim1 () && c == dim2 ()) |
|
766 return; |
|
767 |
|
768 typename Array<T>::ArrayRep *old_rep = Array<T>::rep; |
|
769 const T *old_data = data (); |
|
770 |
5275
|
771 octave_idx_type old_d1 = dim1 (); |
|
772 octave_idx_type old_d2 = dim2 (); |
|
773 octave_idx_type old_len = length (); |
|
774 |
|
775 octave_idx_type ts = get_size (r, c); |
4747
|
776 |
|
777 rep = new typename Array<T>::ArrayRep (ts); |
4513
|
778 |
|
779 dimensions = dim_vector (r, c); |
|
780 |
4747
|
781 if (ts > 0) |
4513
|
782 { |
5275
|
783 octave_idx_type min_r = old_d1 < r ? old_d1 : r; |
|
784 octave_idx_type min_c = old_d2 < c ? old_d2 : c; |
4747
|
785 |
|
786 if (old_data && old_len > 0) |
|
787 { |
5275
|
788 for (octave_idx_type j = 0; j < min_c; j++) |
|
789 for (octave_idx_type i = 0; i < min_r; i++) |
4747
|
790 xelem (i, j) = old_data[old_d1*j+i]; |
|
791 } |
|
792 |
5275
|
793 for (octave_idx_type j = 0; j < min_c; j++) |
|
794 for (octave_idx_type i = min_r; i < r; i++) |
4747
|
795 xelem (i, j) = val; |
|
796 |
5275
|
797 for (octave_idx_type j = min_c; j < c; j++) |
|
798 for (octave_idx_type i = 0; i < r; i++) |
4747
|
799 xelem (i, j) = val; |
4513
|
800 } |
|
801 |
|
802 if (--old_rep->count <= 0) |
|
803 delete old_rep; |
|
804 } |
|
805 |
|
806 template <class T> |
|
807 void |
5275
|
808 Array<T>::resize_and_fill (octave_idx_type r, octave_idx_type c, octave_idx_type p, const T& val) |
4513
|
809 { |
|
810 if (r < 0 || c < 0 || p < 0) |
|
811 { |
|
812 (*current_liboctave_error_handler) |
|
813 ("can't resize to negative dimension"); |
|
814 return; |
|
815 } |
|
816 |
4548
|
817 if (ndims () == 0) |
|
818 dimensions = dim_vector (0, 0, 0); |
|
819 |
|
820 assert (ndims () == 3); |
|
821 |
4513
|
822 if (r == dim1 () && c == dim2 () && p == dim3 ()) |
|
823 return; |
|
824 |
|
825 typename Array<T>::ArrayRep *old_rep = rep; |
|
826 const T *old_data = data (); |
|
827 |
5275
|
828 octave_idx_type old_d1 = dim1 (); |
|
829 octave_idx_type old_d2 = dim2 (); |
|
830 octave_idx_type old_d3 = dim3 (); |
|
831 |
|
832 octave_idx_type old_len = length (); |
|
833 |
|
834 octave_idx_type ts = get_size (get_size (r, c), p); |
4513
|
835 |
|
836 rep = new typename Array<T>::ArrayRep (ts); |
|
837 |
|
838 dimensions = dim_vector (r, c, p); |
|
839 |
4747
|
840 if (ts > 0) |
|
841 { |
5275
|
842 octave_idx_type min_r = old_d1 < r ? old_d1 : r; |
|
843 octave_idx_type min_c = old_d2 < c ? old_d2 : c; |
|
844 octave_idx_type min_p = old_d3 < p ? old_d3 : p; |
4747
|
845 |
|
846 if (old_data && old_len > 0) |
5275
|
847 for (octave_idx_type k = 0; k < min_p; k++) |
|
848 for (octave_idx_type j = 0; j < min_c; j++) |
|
849 for (octave_idx_type i = 0; i < min_r; i++) |
4747
|
850 xelem (i, j, k) = old_data[old_d1*(old_d2*k+j)+i]; |
|
851 |
|
852 // XXX FIXME XXX -- if the copy constructor is expensive, this |
|
853 // may win. Otherwise, it may make more sense to just copy the |
|
854 // value everywhere when making the new ArrayRep. |
|
855 |
5275
|
856 for (octave_idx_type k = 0; k < min_p; k++) |
|
857 for (octave_idx_type j = min_c; j < c; j++) |
|
858 for (octave_idx_type i = 0; i < min_r; i++) |
4747
|
859 xelem (i, j, k) = val; |
|
860 |
5275
|
861 for (octave_idx_type k = 0; k < min_p; k++) |
|
862 for (octave_idx_type j = 0; j < c; j++) |
|
863 for (octave_idx_type i = min_r; i < r; i++) |
4747
|
864 xelem (i, j, k) = val; |
|
865 |
5275
|
866 for (octave_idx_type k = min_p; k < p; k++) |
|
867 for (octave_idx_type j = 0; j < c; j++) |
|
868 for (octave_idx_type i = 0; i < r; i++) |
4747
|
869 xelem (i, j, k) = val; |
|
870 } |
4513
|
871 |
|
872 if (--old_rep->count <= 0) |
|
873 delete old_rep; |
|
874 } |
|
875 |
|
876 template <class T> |
|
877 void |
4587
|
878 Array<T>::resize_and_fill (const dim_vector& dv, const T& val) |
4513
|
879 { |
5275
|
880 octave_idx_type n = dv.length (); |
|
881 |
|
882 for (octave_idx_type i = 0; i < n; i++) |
4513
|
883 { |
4587
|
884 if (dv(i) < 0) |
4513
|
885 { |
|
886 (*current_liboctave_error_handler) |
|
887 ("can't resize to negative dimension"); |
|
888 return; |
|
889 } |
|
890 } |
|
891 |
4553
|
892 bool same_size = true; |
|
893 |
|
894 if (dimensions.length () != n) |
|
895 { |
|
896 same_size = false; |
|
897 } |
|
898 else |
4513
|
899 { |
5275
|
900 for (octave_idx_type i = 0; i < n; i++) |
4513
|
901 { |
4587
|
902 if (dv(i) != dimensions(i)) |
4553
|
903 { |
|
904 same_size = false; |
|
905 break; |
|
906 } |
4513
|
907 } |
|
908 } |
|
909 |
4553
|
910 if (same_size) |
4513
|
911 return; |
|
912 |
|
913 typename Array<T>::ArrayRep *old_rep = rep; |
|
914 const T *old_data = data (); |
|
915 |
5275
|
916 octave_idx_type len = get_size (dv); |
4709
|
917 |
4513
|
918 rep = new typename Array<T>::ArrayRep (len); |
|
919 |
4707
|
920 dim_vector dv_old = dimensions; |
5275
|
921 octave_idx_type dv_old_orig_len = dv_old.length (); |
4587
|
922 dimensions = dv; |
4513
|
923 |
4870
|
924 if (len > 0 && dv_old_orig_len > 0) |
4513
|
925 { |
5275
|
926 Array<octave_idx_type> ra_idx (dimensions.length (), 0); |
4870
|
927 |
|
928 if (n > dv_old_orig_len) |
|
929 { |
|
930 dv_old.resize (n); |
|
931 |
5275
|
932 for (octave_idx_type i = dv_old_orig_len; i < n; i++) |
4870
|
933 dv_old.elem (i) = 1; |
|
934 } |
4747
|
935 |
5275
|
936 for (octave_idx_type i = 0; i < len; i++) |
4747
|
937 { |
|
938 if (index_in_bounds (ra_idx, dv_old)) |
4870
|
939 rep->elem (i) = old_data[get_scalar_idx (ra_idx, dv_old)]; |
|
940 else |
|
941 rep->elem (i) = val; |
|
942 |
|
943 increment_index (ra_idx, dimensions); |
4747
|
944 } |
4513
|
945 } |
4870
|
946 else |
5275
|
947 for (octave_idx_type i = 0; i < len; i++) |
4870
|
948 rep->elem (i) = val; |
4513
|
949 |
|
950 if (--old_rep->count <= 0) |
|
951 delete old_rep; |
|
952 } |
|
953 |
|
954 template <class T> |
|
955 Array<T>& |
5275
|
956 Array<T>::insert (const Array<T>& a, octave_idx_type r, octave_idx_type c) |
4513
|
957 { |
4786
|
958 if (ndims () == 2 && a.ndims () == 2) |
|
959 insert2 (a, r, c); |
|
960 else |
|
961 insertN (a, r, c); |
|
962 |
|
963 return *this; |
|
964 } |
|
965 |
|
966 |
|
967 template <class T> |
|
968 Array<T>& |
5275
|
969 Array<T>::insert2 (const Array<T>& a, octave_idx_type r, octave_idx_type c) |
4786
|
970 { |
5275
|
971 octave_idx_type a_rows = a.rows (); |
|
972 octave_idx_type a_cols = a.cols (); |
4786
|
973 |
|
974 if (r < 0 || r + a_rows > rows () || c < 0 || c + a_cols > cols ()) |
|
975 { |
|
976 (*current_liboctave_error_handler) ("range error for insert"); |
|
977 return *this; |
|
978 } |
|
979 |
5275
|
980 for (octave_idx_type j = 0; j < a_cols; j++) |
|
981 for (octave_idx_type i = 0; i < a_rows; i++) |
4786
|
982 elem (r+i, c+j) = a.elem (i, j); |
|
983 |
|
984 return *this; |
|
985 } |
|
986 |
|
987 template <class T> |
|
988 Array<T>& |
5275
|
989 Array<T>::insertN (const Array<T>& a, octave_idx_type r, octave_idx_type c) |
4786
|
990 { |
4806
|
991 dim_vector dv = dims (); |
|
992 |
4765
|
993 dim_vector a_dv = a.dims (); |
|
994 |
|
995 int n = a_dv.length (); |
|
996 |
|
997 if (n == dimensions.length ()) |
4513
|
998 { |
5275
|
999 Array<octave_idx_type> a_ra_idx (a_dv.length (), 0); |
4765
|
1000 |
|
1001 a_ra_idx.elem (0) = r; |
|
1002 a_ra_idx.elem (1) = c; |
|
1003 |
|
1004 for (int i = 0; i < n; i++) |
|
1005 { |
4806
|
1006 if (a_ra_idx(i) < 0 || (a_ra_idx(i) + a_dv(i)) > dv(i)) |
4765
|
1007 { |
|
1008 (*current_liboctave_error_handler) |
|
1009 ("Array<T>::insert: range error for insert"); |
|
1010 return *this; |
|
1011 } |
|
1012 } |
|
1013 |
5275
|
1014 octave_idx_type n_elt = a.numel (); |
4806
|
1015 |
|
1016 const T *a_data = a.data (); |
|
1017 |
5275
|
1018 octave_idx_type iidx = 0; |
4806
|
1019 |
5275
|
1020 octave_idx_type a_rows = a_dv(0); |
|
1021 |
|
1022 octave_idx_type this_rows = dv(0); |
4806
|
1023 |
5275
|
1024 octave_idx_type numel_page = a_dv(0) * a_dv(1); |
|
1025 |
|
1026 octave_idx_type count_pages = 0; |
4806
|
1027 |
5275
|
1028 for (octave_idx_type i = 0; i < n_elt; i++) |
4765
|
1029 { |
4806
|
1030 if (i != 0 && i % a_rows == 0) |
|
1031 iidx += (this_rows - a_rows); |
|
1032 |
|
1033 if (i % numel_page == 0) |
|
1034 iidx = c * dv(0) + r + dv(0) * dv(1) * count_pages++; |
|
1035 |
|
1036 elem (iidx++) = a_data[i]; |
4765
|
1037 } |
4513
|
1038 } |
4765
|
1039 else |
|
1040 (*current_liboctave_error_handler) |
|
1041 ("Array<T>::insert: invalid indexing operation"); |
4513
|
1042 |
|
1043 return *this; |
|
1044 } |
|
1045 |
|
1046 template <class T> |
|
1047 Array<T>& |
5275
|
1048 Array<T>::insert (const Array<T>& a, const Array<octave_idx_type>& ra_idx) |
4513
|
1049 { |
5275
|
1050 octave_idx_type n = ra_idx.length (); |
4513
|
1051 |
|
1052 if (n == dimensions.length ()) |
|
1053 { |
4915
|
1054 dim_vector dva = a.dims (); |
|
1055 dim_vector dv = dims (); |
|
1056 int len_a = dva.length (); |
5120
|
1057 int non_full_dim = 0; |
4513
|
1058 |
5275
|
1059 for (octave_idx_type i = 0; i < n; i++) |
4513
|
1060 { |
4915
|
1061 if (ra_idx(i) < 0 || (ra_idx(i) + |
|
1062 (i < len_a ? dva(i) : 1)) > dimensions(i)) |
4513
|
1063 { |
|
1064 (*current_liboctave_error_handler) |
|
1065 ("Array<T>::insert: range error for insert"); |
|
1066 return *this; |
|
1067 } |
5120
|
1068 |
|
1069 if (dv(i) != (i < len_a ? dva(i) : 1)) |
|
1070 non_full_dim++; |
4513
|
1071 } |
|
1072 |
4915
|
1073 if (dva.numel ()) |
|
1074 { |
5120
|
1075 if (non_full_dim < 2) |
4915
|
1076 { |
5120
|
1077 // Special case for fast concatenation |
|
1078 const T *a_data = a.data (); |
5275
|
1079 octave_idx_type numel_to_move = 1; |
|
1080 octave_idx_type skip = 0; |
5120
|
1081 for (int i = 0; i < len_a; i++) |
|
1082 if (ra_idx(i) == 0 && dva(i) == dv(i)) |
|
1083 numel_to_move *= dva(i); |
|
1084 else |
|
1085 { |
|
1086 skip = numel_to_move * (dv(i) - dva(i)); |
|
1087 numel_to_move *= dva(i); |
|
1088 break; |
|
1089 } |
|
1090 |
5275
|
1091 octave_idx_type jidx = ra_idx(n-1); |
5120
|
1092 for (int i = n-2; i >= 0; i--) |
|
1093 { |
|
1094 jidx *= dv(i); |
|
1095 jidx += ra_idx(i); |
|
1096 } |
|
1097 |
5275
|
1098 octave_idx_type iidx = 0; |
|
1099 octave_idx_type moves = dva.numel () / numel_to_move; |
|
1100 for (octave_idx_type i = 0; i < moves; i++) |
5120
|
1101 { |
5275
|
1102 for (octave_idx_type j = 0; j < numel_to_move; j++) |
5120
|
1103 elem (jidx++) = a_data[iidx++]; |
|
1104 jidx += skip; |
|
1105 } |
4915
|
1106 } |
5120
|
1107 else |
4915
|
1108 { |
5120
|
1109 // Generic code |
|
1110 const T *a_data = a.data (); |
|
1111 int nel = a.numel (); |
5275
|
1112 Array<octave_idx_type> a_idx (n, 0); |
5120
|
1113 |
|
1114 for (int i = 0; i < nel; i++) |
|
1115 { |
|
1116 int iidx = a_idx(n-1) + ra_idx(n-1); |
|
1117 for (int j = n-2; j >= 0; j--) |
|
1118 { |
|
1119 iidx *= dv(j); |
|
1120 iidx += a_idx(j) + ra_idx(j); |
|
1121 } |
|
1122 |
|
1123 elem (iidx) = a_data[i]; |
|
1124 |
|
1125 increment_index (a_idx, dva); |
|
1126 } |
4915
|
1127 } |
|
1128 } |
4513
|
1129 } |
|
1130 else |
|
1131 (*current_liboctave_error_handler) |
|
1132 ("Array<T>::insert: invalid indexing operation"); |
|
1133 |
|
1134 return *this; |
|
1135 } |
|
1136 |
|
1137 template <class T> |
|
1138 Array<T> |
|
1139 Array<T>::transpose (void) const |
|
1140 { |
4548
|
1141 assert (ndims () == 2); |
|
1142 |
5275
|
1143 octave_idx_type nr = dim1 (); |
|
1144 octave_idx_type nc = dim2 (); |
4513
|
1145 |
|
1146 if (nr > 1 && nc > 1) |
|
1147 { |
|
1148 Array<T> result (dim_vector (nc, nr)); |
|
1149 |
5275
|
1150 for (octave_idx_type j = 0; j < nc; j++) |
|
1151 for (octave_idx_type i = 0; i < nr; i++) |
4513
|
1152 result.xelem (j, i) = xelem (i, j); |
|
1153 |
|
1154 return result; |
|
1155 } |
|
1156 else |
|
1157 { |
|
1158 // Fast transpose for vectors and empty matrices |
|
1159 return Array<T> (*this, dim_vector (nc, nr)); |
|
1160 } |
|
1161 } |
|
1162 |
|
1163 template <class T> |
|
1164 T * |
|
1165 Array<T>::fortran_vec (void) |
|
1166 { |
|
1167 if (rep->count > 1) |
|
1168 { |
|
1169 --rep->count; |
|
1170 rep = new typename Array<T>::ArrayRep (*rep); |
|
1171 } |
|
1172 return rep->data; |
|
1173 } |
|
1174 |
|
1175 template <class T> |
3933
|
1176 void |
4517
|
1177 Array<T>::maybe_delete_dims (void) |
|
1178 { |
4587
|
1179 int nd = dimensions.length (); |
4517
|
1180 |
|
1181 dim_vector new_dims (1, 1); |
|
1182 |
|
1183 bool delete_dims = true; |
|
1184 |
4587
|
1185 for (int i = nd - 1; i >= 0; i--) |
4517
|
1186 { |
|
1187 if (delete_dims) |
|
1188 { |
|
1189 if (dimensions(i) != 1) |
|
1190 { |
|
1191 delete_dims = false; |
|
1192 |
|
1193 new_dims = dim_vector (i + 1, dimensions(i)); |
|
1194 } |
|
1195 } |
|
1196 else |
|
1197 new_dims(i) = dimensions(i); |
|
1198 } |
4530
|
1199 |
4587
|
1200 if (nd != new_dims.length ()) |
4517
|
1201 dimensions = new_dims; |
|
1202 } |
|
1203 |
|
1204 template <class T> |
|
1205 void |
|
1206 Array<T>::clear_index (void) |
|
1207 { |
|
1208 delete [] idx; |
|
1209 idx = 0; |
|
1210 idx_count = 0; |
|
1211 } |
|
1212 |
|
1213 template <class T> |
|
1214 void |
|
1215 Array<T>::set_index (const idx_vector& idx_arg) |
|
1216 { |
|
1217 int nd = ndims (); |
|
1218 |
|
1219 if (! idx && nd > 0) |
|
1220 idx = new idx_vector [nd]; |
|
1221 |
|
1222 if (idx_count < nd) |
|
1223 { |
|
1224 idx[idx_count++] = idx_arg; |
|
1225 } |
|
1226 else |
|
1227 { |
|
1228 idx_vector *new_idx = new idx_vector [idx_count+1]; |
|
1229 |
|
1230 for (int i = 0; i < idx_count; i++) |
|
1231 new_idx[i] = idx[i]; |
|
1232 |
|
1233 new_idx[idx_count++] = idx_arg; |
|
1234 |
|
1235 delete [] idx; |
|
1236 |
|
1237 idx = new_idx; |
|
1238 } |
|
1239 } |
|
1240 |
|
1241 template <class T> |
|
1242 void |
|
1243 Array<T>::maybe_delete_elements (idx_vector& idx_arg) |
|
1244 { |
|
1245 switch (ndims ()) |
|
1246 { |
|
1247 case 1: |
|
1248 maybe_delete_elements_1 (idx_arg); |
|
1249 break; |
|
1250 |
|
1251 case 2: |
|
1252 maybe_delete_elements_2 (idx_arg); |
|
1253 break; |
|
1254 |
|
1255 default: |
|
1256 (*current_liboctave_error_handler) |
|
1257 ("Array<T>::maybe_delete_elements: invalid operation"); |
|
1258 break; |
|
1259 } |
|
1260 } |
|
1261 |
|
1262 template <class T> |
|
1263 void |
|
1264 Array<T>::maybe_delete_elements_1 (idx_vector& idx_arg) |
|
1265 { |
5275
|
1266 octave_idx_type len = length (); |
4517
|
1267 |
|
1268 if (len == 0) |
|
1269 return; |
|
1270 |
|
1271 if (idx_arg.is_colon_equiv (len, 1)) |
|
1272 resize_no_fill (0); |
|
1273 else |
|
1274 { |
|
1275 int num_to_delete = idx_arg.length (len); |
|
1276 |
|
1277 if (num_to_delete != 0) |
|
1278 { |
5275
|
1279 octave_idx_type new_len = len; |
|
1280 |
|
1281 octave_idx_type iidx = 0; |
|
1282 |
|
1283 for (octave_idx_type i = 0; i < len; i++) |
4517
|
1284 if (i == idx_arg.elem (iidx)) |
|
1285 { |
|
1286 iidx++; |
|
1287 new_len--; |
|
1288 |
|
1289 if (iidx == num_to_delete) |
|
1290 break; |
|
1291 } |
|
1292 |
|
1293 if (new_len > 0) |
|
1294 { |
|
1295 T *new_data = new T [new_len]; |
|
1296 |
5275
|
1297 octave_idx_type ii = 0; |
4517
|
1298 iidx = 0; |
5275
|
1299 for (octave_idx_type i = 0; i < len; i++) |
4517
|
1300 { |
|
1301 if (iidx < num_to_delete && i == idx_arg.elem (iidx)) |
|
1302 iidx++; |
|
1303 else |
|
1304 { |
|
1305 new_data[ii] = elem (i); |
|
1306 ii++; |
|
1307 } |
|
1308 } |
|
1309 |
|
1310 if (--rep->count <= 0) |
|
1311 delete rep; |
|
1312 |
|
1313 rep = new typename Array<T>::ArrayRep (new_data, new_len); |
|
1314 |
|
1315 dimensions.resize (1); |
|
1316 dimensions(0) = new_len; |
|
1317 } |
|
1318 else |
|
1319 (*current_liboctave_error_handler) |
|
1320 ("A(idx) = []: index out of range"); |
|
1321 } |
|
1322 } |
|
1323 } |
|
1324 |
|
1325 template <class T> |
|
1326 void |
|
1327 Array<T>::maybe_delete_elements_2 (idx_vector& idx_arg) |
|
1328 { |
4548
|
1329 assert (ndims () == 2); |
|
1330 |
5275
|
1331 octave_idx_type nr = dim1 (); |
|
1332 octave_idx_type nc = dim2 (); |
4517
|
1333 |
|
1334 if (nr == 0 && nc == 0) |
|
1335 return; |
|
1336 |
5275
|
1337 octave_idx_type n; |
4517
|
1338 if (nr == 1) |
|
1339 n = nc; |
|
1340 else if (nc == 1) |
|
1341 n = nr; |
|
1342 else |
|
1343 { |
4756
|
1344 // Reshape to row vector for Matlab compatibility. |
|
1345 |
|
1346 n = nr * nc; |
|
1347 nr = 1; |
|
1348 nc = n; |
4517
|
1349 } |
|
1350 |
|
1351 if (idx_arg.is_colon_equiv (n, 1)) |
|
1352 { |
|
1353 // Either A(:) = [] or A(idx) = [] with idx enumerating all |
|
1354 // elements, so we delete all elements and return [](0x0). To |
|
1355 // preserve the orientation of the vector, you have to use |
|
1356 // A(idx,:) = [] (delete rows) or A(:,idx) (delete columns). |
|
1357 |
|
1358 resize_no_fill (0, 0); |
|
1359 return; |
|
1360 } |
|
1361 |
|
1362 idx_arg.sort (true); |
|
1363 |
5275
|
1364 octave_idx_type num_to_delete = idx_arg.length (n); |
4517
|
1365 |
|
1366 if (num_to_delete != 0) |
|
1367 { |
5275
|
1368 octave_idx_type new_n = n; |
|
1369 |
|
1370 octave_idx_type iidx = 0; |
|
1371 |
|
1372 for (octave_idx_type i = 0; i < n; i++) |
4517
|
1373 if (i == idx_arg.elem (iidx)) |
|
1374 { |
|
1375 iidx++; |
|
1376 new_n--; |
|
1377 |
|
1378 if (iidx == num_to_delete) |
|
1379 break; |
|
1380 } |
|
1381 |
|
1382 if (new_n > 0) |
|
1383 { |
|
1384 T *new_data = new T [new_n]; |
|
1385 |
5275
|
1386 octave_idx_type ii = 0; |
4517
|
1387 iidx = 0; |
5275
|
1388 for (octave_idx_type i = 0; i < n; i++) |
4517
|
1389 { |
|
1390 if (iidx < num_to_delete && i == idx_arg.elem (iidx)) |
|
1391 iidx++; |
|
1392 else |
|
1393 { |
4756
|
1394 new_data[ii] = elem (i); |
4517
|
1395 |
|
1396 ii++; |
|
1397 } |
|
1398 } |
|
1399 |
|
1400 if (--(Array<T>::rep)->count <= 0) |
|
1401 delete Array<T>::rep; |
|
1402 |
|
1403 Array<T>::rep = new typename Array<T>::ArrayRep (new_data, new_n); |
|
1404 |
|
1405 dimensions.resize (2); |
|
1406 |
|
1407 if (nr == 1) |
|
1408 { |
|
1409 dimensions(0) = 1; |
|
1410 dimensions(1) = new_n; |
|
1411 } |
|
1412 else |
|
1413 { |
|
1414 dimensions(0) = new_n; |
|
1415 dimensions(1) = 1; |
|
1416 } |
|
1417 } |
|
1418 else |
|
1419 (*current_liboctave_error_handler) |
|
1420 ("A(idx) = []: index out of range"); |
|
1421 } |
|
1422 } |
|
1423 |
|
1424 template <class T> |
|
1425 void |
|
1426 Array<T>::maybe_delete_elements (idx_vector& idx_i, idx_vector& idx_j) |
|
1427 { |
4548
|
1428 assert (ndims () == 2); |
|
1429 |
5275
|
1430 octave_idx_type nr = dim1 (); |
|
1431 octave_idx_type nc = dim2 (); |
4517
|
1432 |
|
1433 if (nr == 0 && nc == 0) |
|
1434 return; |
|
1435 |
|
1436 if (idx_i.is_colon ()) |
|
1437 { |
|
1438 if (idx_j.is_colon ()) |
|
1439 { |
|
1440 // A(:,:) -- We are deleting columns and rows, so the result |
|
1441 // is [](0x0). |
|
1442 |
|
1443 resize_no_fill (0, 0); |
|
1444 return; |
|
1445 } |
|
1446 |
|
1447 if (idx_j.is_colon_equiv (nc, 1)) |
|
1448 { |
|
1449 // A(:,j) -- We are deleting columns by enumerating them, |
|
1450 // If we enumerate all of them, we should have zero columns |
|
1451 // with the same number of rows that we started with. |
|
1452 |
|
1453 resize_no_fill (nr, 0); |
|
1454 return; |
|
1455 } |
|
1456 } |
|
1457 |
|
1458 if (idx_j.is_colon () && idx_i.is_colon_equiv (nr, 1)) |
|
1459 { |
|
1460 // A(i,:) -- We are deleting rows by enumerating them. If we |
|
1461 // enumerate all of them, we should have zero rows with the |
|
1462 // same number of columns that we started with. |
|
1463 |
|
1464 resize_no_fill (0, nc); |
|
1465 return; |
|
1466 } |
|
1467 |
|
1468 if (idx_i.is_colon_equiv (nr, 1)) |
|
1469 { |
|
1470 if (idx_j.is_colon_equiv (nc, 1)) |
|
1471 resize_no_fill (0, 0); |
|
1472 else |
|
1473 { |
|
1474 idx_j.sort (true); |
|
1475 |
5275
|
1476 octave_idx_type num_to_delete = idx_j.length (nc); |
4517
|
1477 |
|
1478 if (num_to_delete != 0) |
|
1479 { |
|
1480 if (nr == 1 && num_to_delete == nc) |
|
1481 resize_no_fill (0, 0); |
|
1482 else |
|
1483 { |
5275
|
1484 octave_idx_type new_nc = nc; |
|
1485 |
|
1486 octave_idx_type iidx = 0; |
|
1487 |
|
1488 for (octave_idx_type j = 0; j < nc; j++) |
4517
|
1489 if (j == idx_j.elem (iidx)) |
|
1490 { |
|
1491 iidx++; |
|
1492 new_nc--; |
|
1493 |
|
1494 if (iidx == num_to_delete) |
|
1495 break; |
|
1496 } |
|
1497 |
|
1498 if (new_nc > 0) |
|
1499 { |
|
1500 T *new_data = new T [nr * new_nc]; |
|
1501 |
5275
|
1502 octave_idx_type jj = 0; |
4517
|
1503 iidx = 0; |
5275
|
1504 for (octave_idx_type j = 0; j < nc; j++) |
4517
|
1505 { |
|
1506 if (iidx < num_to_delete && j == idx_j.elem (iidx)) |
|
1507 iidx++; |
|
1508 else |
|
1509 { |
5275
|
1510 for (octave_idx_type i = 0; i < nr; i++) |
4517
|
1511 new_data[nr*jj+i] = elem (i, j); |
|
1512 jj++; |
|
1513 } |
|
1514 } |
|
1515 |
|
1516 if (--(Array<T>::rep)->count <= 0) |
|
1517 delete Array<T>::rep; |
|
1518 |
|
1519 Array<T>::rep = new typename Array<T>::ArrayRep (new_data, nr * new_nc); |
|
1520 |
|
1521 dimensions.resize (2); |
|
1522 dimensions(1) = new_nc; |
|
1523 } |
|
1524 else |
|
1525 (*current_liboctave_error_handler) |
|
1526 ("A(idx) = []: index out of range"); |
|
1527 } |
|
1528 } |
|
1529 } |
|
1530 } |
|
1531 else if (idx_j.is_colon_equiv (nc, 1)) |
|
1532 { |
|
1533 if (idx_i.is_colon_equiv (nr, 1)) |
|
1534 resize_no_fill (0, 0); |
|
1535 else |
|
1536 { |
|
1537 idx_i.sort (true); |
|
1538 |
5275
|
1539 octave_idx_type num_to_delete = idx_i.length (nr); |
4517
|
1540 |
|
1541 if (num_to_delete != 0) |
|
1542 { |
|
1543 if (nc == 1 && num_to_delete == nr) |
|
1544 resize_no_fill (0, 0); |
|
1545 else |
|
1546 { |
5275
|
1547 octave_idx_type new_nr = nr; |
|
1548 |
|
1549 octave_idx_type iidx = 0; |
|
1550 |
|
1551 for (octave_idx_type i = 0; i < nr; i++) |
4517
|
1552 if (i == idx_i.elem (iidx)) |
|
1553 { |
|
1554 iidx++; |
|
1555 new_nr--; |
|
1556 |
|
1557 if (iidx == num_to_delete) |
|
1558 break; |
|
1559 } |
|
1560 |
|
1561 if (new_nr > 0) |
|
1562 { |
|
1563 T *new_data = new T [new_nr * nc]; |
|
1564 |
5275
|
1565 octave_idx_type ii = 0; |
4517
|
1566 iidx = 0; |
5275
|
1567 for (octave_idx_type i = 0; i < nr; i++) |
4517
|
1568 { |
|
1569 if (iidx < num_to_delete && i == idx_i.elem (iidx)) |
|
1570 iidx++; |
|
1571 else |
|
1572 { |
5275
|
1573 for (octave_idx_type j = 0; j < nc; j++) |
4517
|
1574 new_data[new_nr*j+ii] = elem (i, j); |
|
1575 ii++; |
|
1576 } |
|
1577 } |
|
1578 |
|
1579 if (--(Array<T>::rep)->count <= 0) |
|
1580 delete Array<T>::rep; |
|
1581 |
|
1582 Array<T>::rep = new typename Array<T>::ArrayRep (new_data, new_nr * nc); |
|
1583 |
|
1584 dimensions.resize (2); |
|
1585 dimensions(0) = new_nr; |
|
1586 } |
|
1587 else |
|
1588 (*current_liboctave_error_handler) |
|
1589 ("A(idx) = []: index out of range"); |
|
1590 } |
|
1591 } |
|
1592 } |
|
1593 } |
|
1594 } |
|
1595 |
|
1596 template <class T> |
|
1597 void |
|
1598 Array<T>::maybe_delete_elements (idx_vector&, idx_vector&, idx_vector&) |
|
1599 { |
|
1600 assert (0); |
|
1601 } |
|
1602 |
|
1603 template <class T> |
|
1604 void |
4585
|
1605 Array<T>::maybe_delete_elements (Array<idx_vector>& ra_idx, const T& rfv) |
4517
|
1606 { |
5275
|
1607 octave_idx_type n_idx = ra_idx.length (); |
4517
|
1608 |
|
1609 dim_vector lhs_dims = dims (); |
|
1610 |
4821
|
1611 if (lhs_dims.all_zero ()) |
|
1612 return; |
|
1613 |
4755
|
1614 int n_lhs_dims = lhs_dims.length (); |
4757
|
1615 |
4740
|
1616 Array<int> idx_is_colon (n_idx, 0); |
|
1617 |
|
1618 Array<int> idx_is_colon_equiv (n_idx, 0); |
4517
|
1619 |
|
1620 // Initialization of colon arrays. |
4757
|
1621 |
5275
|
1622 for (octave_idx_type i = 0; i < n_idx; i++) |
4517
|
1623 { |
4585
|
1624 idx_is_colon_equiv(i) = ra_idx(i).is_colon_equiv (lhs_dims(i), 1); |
|
1625 |
|
1626 idx_is_colon(i) = ra_idx(i).is_colon (); |
4517
|
1627 } |
|
1628 |
4755
|
1629 bool idx_ok = true; |
|
1630 |
|
1631 // Check for index out of bounds. |
|
1632 |
5275
|
1633 for (octave_idx_type i = 0 ; i < n_idx - 1; i++) |
4517
|
1634 { |
4755
|
1635 if (! (idx_is_colon(i) || idx_is_colon_equiv(i))) |
|
1636 { |
|
1637 ra_idx(i).sort (true); |
4757
|
1638 |
4755
|
1639 if (ra_idx(i).max () > lhs_dims(i)) |
|
1640 { |
|
1641 (*current_liboctave_error_handler) |
|
1642 ("index exceeds array dimensions"); |
4757
|
1643 |
4755
|
1644 idx_ok = false; |
|
1645 break; |
|
1646 } |
|
1647 else if (ra_idx(i).min () < 0) // I believe this is checked elsewhere |
|
1648 { |
|
1649 (*current_liboctave_error_handler) |
|
1650 ("index must be one or larger"); |
|
1651 |
|
1652 idx_ok = false; |
|
1653 break; |
|
1654 } |
|
1655 } |
4517
|
1656 } |
4757
|
1657 |
4755
|
1658 if (n_idx <= n_lhs_dims) |
4517
|
1659 { |
5275
|
1660 octave_idx_type last_idx = ra_idx(n_idx-1).max (); |
|
1661 |
|
1662 octave_idx_type sum_el = lhs_dims(n_idx-1); |
|
1663 |
|
1664 for (octave_idx_type i = n_idx; i < n_lhs_dims; i++) |
4755
|
1665 sum_el *= lhs_dims(i); |
|
1666 |
|
1667 if (last_idx > sum_el - 1) |
|
1668 { |
|
1669 (*current_liboctave_error_handler) |
|
1670 ("index exceeds array dimensions"); |
|
1671 |
|
1672 idx_ok = false; |
|
1673 } |
4757
|
1674 } |
4755
|
1675 |
|
1676 if (idx_ok) |
|
1677 { |
|
1678 if (n_idx > 1 |
|
1679 && (all_ones (idx_is_colon) || all_ones (idx_is_colon_equiv))) |
4517
|
1680 { |
4755
|
1681 // A(:,:,:) -- we are deleting elements in all dimensions, so |
|
1682 // the result is [](0x0x0). |
|
1683 |
|
1684 dim_vector zeros; |
|
1685 zeros.resize (n_idx); |
|
1686 |
|
1687 for (int i = 0; i < n_idx; i++) |
|
1688 zeros(i) = 0; |
|
1689 |
|
1690 resize (zeros, rfv); |
4517
|
1691 } |
|
1692 |
4755
|
1693 else if (n_idx > 1 |
|
1694 && num_ones (idx_is_colon) == n_idx - 1 |
|
1695 && num_ones (idx_is_colon_equiv) == n_idx) |
|
1696 { |
|
1697 // A(:,:,j) -- we are deleting elements in one dimension by |
|
1698 // enumerating them. |
|
1699 // |
|
1700 // If we enumerate all of the elements, we should have zero |
|
1701 // elements in that dimension with the same number of elements |
|
1702 // in the other dimensions that we started with. |
|
1703 |
|
1704 dim_vector temp_dims; |
|
1705 temp_dims.resize (n_idx); |
|
1706 |
5275
|
1707 for (octave_idx_type i = 0; i < n_idx; i++) |
4755
|
1708 { |
|
1709 if (idx_is_colon (i)) |
|
1710 temp_dims(i) = lhs_dims(i); |
|
1711 else |
|
1712 temp_dims(i) = 0; |
|
1713 } |
|
1714 |
|
1715 resize (temp_dims); |
|
1716 } |
|
1717 else if (n_idx > 1 && num_ones (idx_is_colon) == n_idx - 1) |
4741
|
1718 { |
4755
|
1719 // We have colons in all indices except for one. |
|
1720 // This index tells us which slice to delete |
|
1721 |
|
1722 if (n_idx < n_lhs_dims) |
|
1723 { |
|
1724 // Collapse dimensions beyond last index. |
|
1725 |
|
1726 if (liboctave_wfi_flag && ! (ra_idx(n_idx-1).is_colon ())) |
|
1727 (*current_liboctave_warning_handler) |
|
1728 ("fewer indices than dimensions for N-d array"); |
|
1729 |
5275
|
1730 for (octave_idx_type i = n_idx; i < n_lhs_dims; i++) |
4755
|
1731 lhs_dims(n_idx-1) *= lhs_dims(i); |
|
1732 |
|
1733 lhs_dims.resize (n_idx); |
|
1734 |
|
1735 // Reshape *this. |
|
1736 dimensions = lhs_dims; |
|
1737 } |
|
1738 |
|
1739 int non_col = 0; |
|
1740 |
|
1741 // Find the non-colon column. |
|
1742 |
5275
|
1743 for (octave_idx_type i = 0; i < n_idx; i++) |
4755
|
1744 { |
|
1745 if (! idx_is_colon(i)) |
|
1746 non_col = i; |
|
1747 } |
|
1748 |
|
1749 // The length of the non-colon dimension. |
|
1750 |
5275
|
1751 octave_idx_type non_col_dim = lhs_dims (non_col); |
|
1752 |
|
1753 octave_idx_type num_to_delete = ra_idx(non_col).length (lhs_dims (non_col)); |
4755
|
1754 |
|
1755 if (num_to_delete > 0) |
|
1756 { |
|
1757 int temp = lhs_dims.num_ones (); |
|
1758 |
|
1759 if (non_col_dim == 1) |
|
1760 temp--; |
|
1761 |
|
1762 if (temp == n_idx - 1 && num_to_delete == non_col_dim) |
|
1763 { |
|
1764 // We have A with (1x1x4), where A(1,:,1:4) |
|
1765 // Delete all (0x0x0) |
|
1766 |
|
1767 dim_vector zero_dims (n_idx, 0); |
|
1768 |
|
1769 resize (zero_dims, rfv); |
|
1770 } |
|
1771 else |
|
1772 { |
|
1773 // New length of non-colon dimension |
|
1774 // (calculated in the next for loop) |
|
1775 |
5275
|
1776 octave_idx_type new_dim = non_col_dim; |
|
1777 |
|
1778 octave_idx_type iidx = 0; |
|
1779 |
|
1780 for (octave_idx_type j = 0; j < non_col_dim; j++) |
4755
|
1781 if (j == ra_idx(non_col).elem (iidx)) |
|
1782 { |
|
1783 iidx++; |
|
1784 |
|
1785 new_dim--; |
|
1786 |
|
1787 if (iidx == num_to_delete) |
|
1788 break; |
|
1789 } |
|
1790 |
|
1791 // Creating the new nd array after deletions. |
|
1792 |
|
1793 if (new_dim > 0) |
|
1794 { |
|
1795 // Calculate number of elements in new array. |
|
1796 |
5275
|
1797 octave_idx_type num_new_elem=1; |
4755
|
1798 |
|
1799 for (int i = 0; i < n_idx; i++) |
|
1800 { |
|
1801 if (i == non_col) |
|
1802 num_new_elem *= new_dim; |
|
1803 |
|
1804 else |
|
1805 num_new_elem *= lhs_dims(i); |
|
1806 } |
|
1807 |
|
1808 T *new_data = new T [num_new_elem]; |
|
1809 |
5275
|
1810 Array<octave_idx_type> result_idx (n_lhs_dims, 0); |
4755
|
1811 |
|
1812 dim_vector new_lhs_dim = lhs_dims; |
|
1813 |
|
1814 new_lhs_dim(non_col) = new_dim; |
|
1815 |
5275
|
1816 octave_idx_type num_elem = 1; |
|
1817 |
|
1818 octave_idx_type numidx = 0; |
|
1819 |
|
1820 octave_idx_type n = length (); |
4755
|
1821 |
|
1822 for (int i = 0; i < n_lhs_dims; i++) |
|
1823 if (i != non_col) |
|
1824 num_elem *= lhs_dims(i); |
|
1825 |
|
1826 num_elem *= ra_idx(non_col).capacity (); |
|
1827 |
5275
|
1828 for (octave_idx_type i = 0; i < n; i++) |
4755
|
1829 { |
|
1830 if (numidx < num_elem |
|
1831 && is_in (result_idx(non_col), ra_idx(non_col))) |
|
1832 numidx++; |
|
1833 |
|
1834 else |
|
1835 { |
5275
|
1836 Array<octave_idx_type> temp_result_idx = result_idx; |
|
1837 |
|
1838 octave_idx_type num_lgt = how_many_lgt (result_idx(non_col), |
4755
|
1839 ra_idx(non_col)); |
|
1840 |
|
1841 temp_result_idx(non_col) -= num_lgt; |
|
1842 |
5275
|
1843 octave_idx_type kidx |
4755
|
1844 = ::compute_index (temp_result_idx, new_lhs_dim); |
|
1845 |
|
1846 new_data[kidx] = elem (result_idx); |
|
1847 } |
|
1848 |
|
1849 increment_index (result_idx, lhs_dims); |
|
1850 } |
|
1851 |
|
1852 if (--rep->count <= 0) |
|
1853 delete rep; |
|
1854 |
|
1855 rep = new typename Array<T>::ArrayRep (new_data, |
|
1856 num_new_elem); |
|
1857 |
|
1858 dimensions = new_lhs_dim; |
|
1859 } |
|
1860 } |
|
1861 } |
4517
|
1862 } |
4755
|
1863 else if (n_idx == 1) |
4517
|
1864 { |
4821
|
1865 // This handle cases where we only have one index (not |
|
1866 // colon). The index denotes which elements we should |
|
1867 // delete in the array which can be of any dimension. We |
|
1868 // return a column vector, except for the case where we are |
|
1869 // operating on a row vector. The elements are numerated |
|
1870 // column by column. |
4755
|
1871 // |
|
1872 // A(3,3,3)=2; |
|
1873 // A(3:5) = []; A(6)=[] |
4757
|
1874 |
5275
|
1875 octave_idx_type lhs_numel = numel (); |
4757
|
1876 |
4821
|
1877 idx_vector idx_vec = ra_idx(0); |
|
1878 |
|
1879 idx_vec.freeze (lhs_numel, 0, true, liboctave_wrore_flag); |
|
1880 |
|
1881 idx_vec.sort (true); |
|
1882 |
5275
|
1883 octave_idx_type num_to_delete = idx_vec.length (lhs_numel); |
4821
|
1884 |
|
1885 if (num_to_delete > 0) |
4517
|
1886 { |
5275
|
1887 octave_idx_type new_numel = lhs_numel - num_to_delete; |
4821
|
1888 |
|
1889 T *new_data = new T[new_numel]; |
|
1890 |
5275
|
1891 Array<octave_idx_type> lhs_ra_idx (ndims (), 0); |
|
1892 |
|
1893 octave_idx_type ii = 0; |
|
1894 octave_idx_type iidx = 0; |
|
1895 |
|
1896 for (octave_idx_type i = 0; i < lhs_numel; i++) |
4755
|
1897 { |
4821
|
1898 if (iidx < num_to_delete && i == idx_vec.elem (iidx)) |
|
1899 { |
|
1900 iidx++; |
|
1901 } |
|
1902 else |
|
1903 { |
|
1904 new_data[ii++] = elem (lhs_ra_idx); |
|
1905 } |
|
1906 |
|
1907 increment_index (lhs_ra_idx, lhs_dims); |
|
1908 } |
|
1909 |
|
1910 if (--(Array<T>::rep)->count <= 0) |
|
1911 delete Array<T>::rep; |
|
1912 |
|
1913 Array<T>::rep = new typename Array<T>::ArrayRep (new_data, new_numel); |
|
1914 |
|
1915 dimensions.resize (2); |
|
1916 |
|
1917 if (lhs_dims.length () == 2 && lhs_dims(1) == 1) |
|
1918 { |
|
1919 dimensions(0) = new_numel; |
|
1920 dimensions(1) = 1; |
4755
|
1921 } |
|
1922 else |
|
1923 { |
4821
|
1924 dimensions(0) = 1; |
|
1925 dimensions(1) = new_numel; |
4755
|
1926 } |
4517
|
1927 } |
|
1928 } |
4755
|
1929 else if (num_ones (idx_is_colon) < n_idx) |
|
1930 { |
|
1931 (*current_liboctave_error_handler) |
|
1932 ("a null assignment can have only one non-colon index"); |
|
1933 } |
4517
|
1934 } |
|
1935 } |
|
1936 |
|
1937 template <class T> |
|
1938 Array<T> |
|
1939 Array<T>::value (void) |
|
1940 { |
|
1941 Array<T> retval; |
|
1942 |
|
1943 int n_idx = index_count (); |
|
1944 |
|
1945 if (n_idx == 2) |
|
1946 { |
|
1947 idx_vector *tmp = get_idx (); |
|
1948 |
|
1949 idx_vector idx_i = tmp[0]; |
|
1950 idx_vector idx_j = tmp[1]; |
|
1951 |
|
1952 retval = index (idx_i, idx_j); |
|
1953 } |
|
1954 else if (n_idx == 1) |
|
1955 { |
|
1956 retval = index (idx[0]); |
|
1957 } |
|
1958 else |
|
1959 (*current_liboctave_error_handler) |
|
1960 ("Array<T>::value: invalid number of indices specified"); |
|
1961 |
|
1962 clear_index (); |
|
1963 |
|
1964 return retval; |
|
1965 } |
|
1966 |
|
1967 template <class T> |
|
1968 Array<T> |
|
1969 Array<T>::index (idx_vector& idx_arg, int resize_ok, const T& rfv) const |
|
1970 { |
|
1971 Array<T> retval; |
|
1972 |
5081
|
1973 dim_vector dv = idx_arg.orig_dimensions (); |
|
1974 |
|
1975 if (dv.length () > 2 || ndims () > 2) |
|
1976 retval = indexN (idx_arg, resize_ok, rfv); |
|
1977 else |
4517
|
1978 { |
5081
|
1979 switch (ndims ()) |
|
1980 { |
|
1981 case 1: |
|
1982 retval = index1 (idx_arg, resize_ok, rfv); |
|
1983 break; |
|
1984 |
|
1985 case 2: |
|
1986 retval = index2 (idx_arg, resize_ok, rfv); |
|
1987 break; |
|
1988 |
|
1989 default: |
|
1990 (*current_liboctave_error_handler) |
|
1991 ("invalid array (internal error)"); |
|
1992 break; |
|
1993 } |
4517
|
1994 } |
|
1995 |
|
1996 return retval; |
|
1997 } |
|
1998 |
|
1999 template <class T> |
|
2000 Array<T> |
|
2001 Array<T>::index1 (idx_vector& idx_arg, int resize_ok, const T& rfv) const |
|
2002 { |
|
2003 Array<T> retval; |
|
2004 |
5275
|
2005 octave_idx_type len = length (); |
|
2006 |
|
2007 octave_idx_type n = idx_arg.freeze (len, "vector", resize_ok); |
4517
|
2008 |
|
2009 if (idx_arg) |
|
2010 { |
|
2011 if (idx_arg.is_colon_equiv (len)) |
|
2012 { |
|
2013 retval = *this; |
|
2014 } |
|
2015 else if (n == 0) |
|
2016 { |
|
2017 retval.resize_no_fill (0); |
|
2018 } |
|
2019 else if (len == 1 && n > 1 |
|
2020 && idx_arg.one_zero_only () |
|
2021 && idx_arg.ones_count () == n) |
|
2022 { |
4548
|
2023 retval.resize_and_fill (n, elem (0)); |
4517
|
2024 } |
|
2025 else |
|
2026 { |
|
2027 retval.resize_no_fill (n); |
|
2028 |
5275
|
2029 for (octave_idx_type i = 0; i < n; i++) |
4517
|
2030 { |
5275
|
2031 octave_idx_type ii = idx_arg.elem (i); |
4517
|
2032 if (ii >= len) |
|
2033 retval.elem (i) = rfv; |
|
2034 else |
|
2035 retval.elem (i) = elem (ii); |
|
2036 } |
|
2037 } |
|
2038 } |
|
2039 |
|
2040 // idx_vector::freeze() printed an error message for us. |
|
2041 |
|
2042 return retval; |
|
2043 } |
|
2044 |
|
2045 template <class T> |
|
2046 Array<T> |
|
2047 Array<T>::index2 (idx_vector& idx_arg, int resize_ok, const T& rfv) const |
|
2048 { |
|
2049 Array<T> retval; |
|
2050 |
4548
|
2051 assert (ndims () == 2); |
|
2052 |
5275
|
2053 octave_idx_type nr = dim1 (); |
|
2054 octave_idx_type nc = dim2 (); |
|
2055 |
|
2056 octave_idx_type orig_len = nr * nc; |
4517
|
2057 |
4832
|
2058 dim_vector idx_orig_dims = idx_arg.orig_dimensions (); |
|
2059 |
5275
|
2060 octave_idx_type idx_orig_rows = idx_arg.orig_rows (); |
|
2061 octave_idx_type idx_orig_columns = idx_arg.orig_columns (); |
4517
|
2062 |
|
2063 if (idx_arg.is_colon ()) |
|
2064 { |
|
2065 // Fast magic colon processing. |
|
2066 |
5275
|
2067 octave_idx_type result_nr = nr * nc; |
|
2068 octave_idx_type result_nc = 1; |
4517
|
2069 |
|
2070 retval = Array<T> (*this, dim_vector (result_nr, result_nc)); |
|
2071 } |
|
2072 else if (nr == 1 && nc == 1) |
|
2073 { |
|
2074 Array<T> tmp = Array<T>::index1 (idx_arg, resize_ok); |
|
2075 |
5275
|
2076 octave_idx_type len = tmp.length (); |
4828
|
2077 |
|
2078 if (len == 0 && idx_arg.one_zero_only ()) |
|
2079 retval = Array<T> (tmp, dim_vector (0, 0)); |
4876
|
2080 else if (len >= idx_orig_dims.numel ()) |
4832
|
2081 retval = Array<T> (tmp, idx_orig_dims); |
4517
|
2082 } |
|
2083 else if (nr == 1 || nc == 1) |
|
2084 { |
|
2085 // If indexing a vector with a matrix, return value has same |
|
2086 // shape as the index. Otherwise, it has same orientation as |
|
2087 // indexed object. |
|
2088 |
4828
|
2089 Array<T> tmp = Array<T>::index1 (idx_arg, resize_ok); |
4517
|
2090 |
5275
|
2091 octave_idx_type len = tmp.length (); |
4517
|
2092 |
4827
|
2093 if ((len != 0 && idx_arg.one_zero_only ()) |
|
2094 || idx_orig_rows == 1 || idx_orig_columns == 1) |
4517
|
2095 { |
4827
|
2096 if (nr == 1) |
|
2097 retval = Array<T> (tmp, dim_vector (1, len)); |
4517
|
2098 else |
4827
|
2099 retval = Array<T> (tmp, dim_vector (len, 1)); |
4517
|
2100 } |
4876
|
2101 else if (len >= idx_orig_dims.numel ()) |
4832
|
2102 retval = Array<T> (tmp, idx_orig_dims); |
4517
|
2103 } |
|
2104 else |
|
2105 { |
|
2106 if (liboctave_wfi_flag |
|
2107 && ! (idx_arg.one_zero_only () |
|
2108 && idx_orig_rows == nr |
|
2109 && idx_orig_columns == nc)) |
|
2110 (*current_liboctave_warning_handler) ("single index used for matrix"); |
|
2111 |
|
2112 // This code is only for indexing matrices. The vector |
|
2113 // cases are handled above. |
|
2114 |
|
2115 idx_arg.freeze (nr * nc, "matrix", resize_ok); |
|
2116 |
|
2117 if (idx_arg) |
|
2118 { |
5275
|
2119 octave_idx_type result_nr = idx_orig_rows; |
|
2120 octave_idx_type result_nc = idx_orig_columns; |
4517
|
2121 |
|
2122 if (idx_arg.one_zero_only ()) |
|
2123 { |
|
2124 result_nr = idx_arg.ones_count (); |
|
2125 result_nc = (result_nr > 0 ? 1 : 0); |
|
2126 } |
|
2127 |
|
2128 retval.resize_no_fill (result_nr, result_nc); |
|
2129 |
5275
|
2130 octave_idx_type k = 0; |
|
2131 for (octave_idx_type j = 0; j < result_nc; j++) |
4517
|
2132 { |
5275
|
2133 for (octave_idx_type i = 0; i < result_nr; i++) |
4517
|
2134 { |
5275
|
2135 octave_idx_type ii = idx_arg.elem (k++); |
4517
|
2136 if (ii >= orig_len) |
|
2137 retval.elem (i, j) = rfv; |
|
2138 else |
|
2139 { |
5275
|
2140 octave_idx_type fr = ii % nr; |
|
2141 octave_idx_type fc = (ii - fr) / nr; |
4517
|
2142 retval.elem (i, j) = elem (fr, fc); |
|
2143 } |
|
2144 } |
|
2145 } |
|
2146 } |
|
2147 // idx_vector::freeze() printed an error message for us. |
|
2148 } |
|
2149 |
|
2150 return retval; |
|
2151 } |
|
2152 |
|
2153 template <class T> |
|
2154 Array<T> |
4530
|
2155 Array<T>::indexN (idx_vector& ra_idx, int resize_ok, const T& rfv) const |
|
2156 { |
|
2157 Array<T> retval; |
|
2158 |
4747
|
2159 int n_dims = dims().length (); |
|
2160 |
5275
|
2161 octave_idx_type orig_len = dims().numel (); |
4530
|
2162 |
4757
|
2163 dim_vector idx_orig_dims = ra_idx.orig_dimensions (); |
4530
|
2164 |
|
2165 if (ra_idx.is_colon ()) |
|
2166 { |
4651
|
2167 // Fast magic colon processing. |
|
2168 |
|
2169 retval = Array<T> (*this, dim_vector (orig_len, 1)); |
4530
|
2170 } |
|
2171 else if (length () == 1) |
|
2172 { |
|
2173 // Only one element in array. |
|
2174 |
|
2175 Array<T> tmp = Array<T>::index (ra_idx, resize_ok); |
|
2176 |
5275
|
2177 octave_idx_type len = tmp.length (); |
4876
|
2178 |
|
2179 if (len != 0) |
|
2180 { |
|
2181 if (len >= idx_orig_dims.numel ()) |
|
2182 retval = Array<T> (tmp, idx_orig_dims); |
|
2183 } |
4530
|
2184 else |
4755
|
2185 retval = Array<T> (tmp, dim_vector (0, 0)); |
4530
|
2186 } |
|
2187 else if (vector_equivalent (dims ())) |
4757
|
2188 { |
4530
|
2189 // We're getting elements from a vector equivalent i.e. (1x4x1). |
|
2190 |
|
2191 Array<T> tmp = Array<T>::index (ra_idx, resize_ok); |
|
2192 |
5275
|
2193 octave_idx_type len = tmp.length (); |
4530
|
2194 |
|
2195 if (len == 0) |
|
2196 { |
4747
|
2197 if (idx_orig_dims.any_zero ()) |
4530
|
2198 retval = Array<T> (idx_orig_dims); |
|
2199 else |
|
2200 { |
|
2201 dim_vector new_dims; |
4673
|
2202 |
4530
|
2203 new_dims.resize (n_dims); |
|
2204 |
|
2205 for (int i = 0; i < n_dims; i++) |
|
2206 { |
|
2207 if ((dims ())(i) == 1) |
|
2208 new_dims(i) = 1; |
|
2209 } |
|
2210 |
4673
|
2211 new_dims.chop_trailing_singletons (); |
|
2212 |
4530
|
2213 retval = Array<T> (new_dims); |
|
2214 } |
|
2215 } |
|
2216 else |
|
2217 { |
4746
|
2218 if (vector_equivalent (idx_orig_dims)) |
4530
|
2219 { |
|
2220 // Array<int> index (n_dims, len); |
|
2221 dim_vector new_dims; |
|
2222 |
|
2223 new_dims.resize (n_dims); |
|
2224 |
|
2225 for (int i = 0; i < n_dims; i++) |
|
2226 { |
|
2227 if ((dims ())(i) == 1) |
|
2228 new_dims(i) = 1; |
|
2229 } |
|
2230 |
4673
|
2231 new_dims.chop_trailing_singletons (); |
|
2232 |
4530
|
2233 retval = Array<T> (tmp, new_dims); |
|
2234 } |
4876
|
2235 else if (tmp.length () >= idx_orig_dims.numel ()) |
4530
|
2236 retval = Array<T> (tmp, idx_orig_dims); |
|
2237 |
|
2238 (*current_liboctave_error_handler) |
|
2239 ("I do not know what to do here yet!"); |
|
2240 } |
|
2241 } |
4651
|
2242 else |
4530
|
2243 { |
4651
|
2244 if (liboctave_wfi_flag |
|
2245 && ! (ra_idx.is_colon () |
4747
|
2246 || (ra_idx.one_zero_only () && idx_orig_dims == dims ()))) |
4651
|
2247 (*current_liboctave_warning_handler) |
|
2248 ("single index used for N-d array"); |
4530
|
2249 |
|
2250 ra_idx.freeze (orig_len, "nd-array", resize_ok); |
|
2251 |
|
2252 if (ra_idx) |
4757
|
2253 { |
4530
|
2254 dim_vector result_dims (idx_orig_dims); |
|
2255 |
|
2256 if (ra_idx.one_zero_only ()) |
|
2257 { |
4651
|
2258 result_dims.resize (2); |
5275
|
2259 octave_idx_type ntot = ra_idx.ones_count (); |
4651
|
2260 result_dims(0) = ntot; |
|
2261 result_dims(1) = (ntot > 0 ? 1 : 0); |
4530
|
2262 } |
|
2263 |
4673
|
2264 result_dims.chop_trailing_singletons (); |
|
2265 |
4530
|
2266 retval.resize (result_dims); |
|
2267 |
5275
|
2268 octave_idx_type n = result_dims.numel (); |
4530
|
2269 |
|
2270 int r_dims = result_dims.length (); |
|
2271 |
5275
|
2272 Array<octave_idx_type> iidx (r_dims, 0); |
|
2273 |
|
2274 octave_idx_type k = 0; |
|
2275 |
|
2276 for (octave_idx_type i = 0; i < n; i++) |
4530
|
2277 { |
5275
|
2278 octave_idx_type ii = ra_idx.elem (k++); |
4530
|
2279 |
|
2280 if (ii >= orig_len) |
4587
|
2281 retval.elem (iidx) = rfv; |
4530
|
2282 else |
|
2283 { |
|
2284 Array<int> temp = get_ra_idx (ii, dims ()); |
|
2285 |
4587
|
2286 retval.elem (iidx) = elem (temp); |
4530
|
2287 } |
|
2288 if (i != n - 1) |
4587
|
2289 increment_index (iidx, result_dims); |
4530
|
2290 } |
|
2291 } |
|
2292 } |
|
2293 |
|
2294 return retval; |
|
2295 } |
|
2296 |
|
2297 template <class T> |
|
2298 Array<T> |
4517
|
2299 Array<T>::index (idx_vector& idx_i, idx_vector& idx_j, int resize_ok, |
|
2300 const T& rfv) const |
|
2301 { |
|
2302 Array<T> retval; |
|
2303 |
4548
|
2304 assert (ndims () == 2); |
|
2305 |
5275
|
2306 octave_idx_type nr = dim1 (); |
|
2307 octave_idx_type nc = dim2 (); |
|
2308 |
|
2309 octave_idx_type n = idx_i.freeze (nr, "row", resize_ok); |
|
2310 octave_idx_type m = idx_j.freeze (nc, "column", resize_ok); |
4517
|
2311 |
|
2312 if (idx_i && idx_j) |
|
2313 { |
|
2314 if (idx_i.orig_empty () || idx_j.orig_empty () || n == 0 || m == 0) |
|
2315 { |
|
2316 retval.resize_no_fill (n, m); |
|
2317 } |
|
2318 else if (idx_i.is_colon_equiv (nr) && idx_j.is_colon_equiv (nc)) |
|
2319 { |
|
2320 retval = *this; |
|
2321 } |
|
2322 else |
|
2323 { |
|
2324 retval.resize_no_fill (n, m); |
|
2325 |
5275
|
2326 for (octave_idx_type j = 0; j < m; j++) |
4517
|
2327 { |
5275
|
2328 octave_idx_type jj = idx_j.elem (j); |
|
2329 for (octave_idx_type i = 0; i < n; i++) |
4517
|
2330 { |
5275
|
2331 octave_idx_type ii = idx_i.elem (i); |
4517
|
2332 if (ii >= nr || jj >= nc) |
|
2333 retval.elem (i, j) = rfv; |
|
2334 else |
|
2335 retval.elem (i, j) = elem (ii, jj); |
|
2336 } |
|
2337 } |
|
2338 } |
|
2339 } |
|
2340 |
|
2341 // idx_vector::freeze() printed an error message for us. |
|
2342 |
|
2343 return retval; |
|
2344 } |
|
2345 |
|
2346 template <class T> |
|
2347 Array<T> |
4661
|
2348 Array<T>::index (Array<idx_vector>& ra_idx, int resize_ok, const T&) const |
4517
|
2349 { |
4530
|
2350 // This function handles all calls with more than one idx. |
|
2351 // For (3x3x3), the call can be A(2,5), A(2,:,:), A(3,2,3) etc. |
|
2352 |
4517
|
2353 Array<T> retval; |
|
2354 |
|
2355 int n_dims = dimensions.length (); |
|
2356 |
4737
|
2357 // Remove trailing singletons in ra_idx, but leave at least ndims |
|
2358 // elements. |
|
2359 |
5275
|
2360 octave_idx_type ra_idx_len = ra_idx.length (); |
4737
|
2361 |
4887
|
2362 bool trim_trailing_singletons = true; |
5275
|
2363 for (octave_idx_type j = ra_idx_len; j > n_dims; j--) |
4737
|
2364 { |
4887
|
2365 idx_vector iidx = ra_idx (ra_idx_len-1); |
|
2366 if (iidx.capacity () == 1 && trim_trailing_singletons) |
4737
|
2367 ra_idx_len--; |
|
2368 else |
4887
|
2369 trim_trailing_singletons = false; |
|
2370 |
5275
|
2371 for (octave_idx_type i = 0; i < iidx.capacity (); i++) |
4887
|
2372 if (iidx (i) != 0) |
|
2373 { |
|
2374 (*current_liboctave_error_handler) |
|
2375 ("index exceeds N-d array dimensions"); |
|
2376 |
|
2377 return retval; |
|
2378 } |
4737
|
2379 } |
|
2380 |
|
2381 ra_idx.resize (ra_idx_len); |
|
2382 |
4887
|
2383 dim_vector new_dims = dims (); |
|
2384 dim_vector frozen_lengths; |
|
2385 |
|
2386 if (! any_orig_empty (ra_idx) && ra_idx_len < n_dims) |
|
2387 frozen_lengths = short_freeze (ra_idx, dimensions, resize_ok); |
|
2388 else |
4517
|
2389 { |
4887
|
2390 new_dims.resize (ra_idx_len, 1); |
|
2391 frozen_lengths = freeze (ra_idx, new_dims, resize_ok); |
4530
|
2392 } |
|
2393 |
4887
|
2394 if (all_ok (ra_idx)) |
4530
|
2395 { |
4887
|
2396 if (any_orig_empty (ra_idx) || frozen_lengths.any_zero ()) |
|
2397 { |
|
2398 frozen_lengths.chop_trailing_singletons (); |
|
2399 |
|
2400 retval.resize (frozen_lengths); |
|
2401 } |
|
2402 else if (frozen_lengths.length () == n_dims |
|
2403 && all_colon_equiv (ra_idx, dimensions)) |
|
2404 { |
|
2405 retval = *this; |
|
2406 } |
|
2407 else |
4517
|
2408 { |
4887
|
2409 dim_vector frozen_lengths_for_resize = frozen_lengths; |
|
2410 |
|
2411 frozen_lengths_for_resize.chop_trailing_singletons (); |
|
2412 |
|
2413 retval.resize (frozen_lengths_for_resize); |
|
2414 |
5275
|
2415 octave_idx_type n = retval.length (); |
|
2416 |
|
2417 Array<octave_idx_type> result_idx (ra_idx.length (), 0); |
|
2418 |
|
2419 Array<octave_idx_type> elt_idx; |
|
2420 |
|
2421 for (octave_idx_type i = 0; i < n; i++) |
4530
|
2422 { |
4887
|
2423 elt_idx = get_elt_idx (ra_idx, result_idx); |
|
2424 |
5275
|
2425 octave_idx_type numelem_elt = get_scalar_idx (elt_idx, new_dims); |
4887
|
2426 |
|
2427 if (numelem_elt > length () || numelem_elt < 0) |
|
2428 (*current_liboctave_error_handler) |
|
2429 ("invalid N-d array index"); |
|
2430 else |
|
2431 retval.elem (i) = elem (numelem_elt); |
|
2432 |
|
2433 increment_index (result_idx, frozen_lengths); |
|
2434 |
4517
|
2435 } |
|
2436 } |
|
2437 } |
|
2438 |
|
2439 return retval; |
|
2440 } |
|
2441 |
|
2442 // XXX FIXME XXX -- this is a mess. |
|
2443 |
|
2444 template <class LT, class RT> |
|
2445 int |
|
2446 assign (Array<LT>& lhs, const Array<RT>& rhs, const LT& rfv) |
|
2447 { |
|
2448 int retval = 0; |
|
2449 |
|
2450 switch (lhs.ndims ()) |
|
2451 { |
|
2452 case 0: |
|
2453 { |
|
2454 if (lhs.index_count () < 3) |
|
2455 { |
|
2456 // kluge... |
|
2457 lhs.resize_no_fill (0, 0); |
|
2458 retval = assign2 (lhs, rhs, rfv); |
|
2459 } |
|
2460 else |
|
2461 retval = assignN (lhs, rhs, rfv); |
|
2462 } |
|
2463 break; |
|
2464 |
|
2465 case 1: |
|
2466 { |
|
2467 if (lhs.index_count () > 1) |
|
2468 retval = assignN (lhs, rhs, rfv); |
|
2469 else |
|
2470 retval = assign1 (lhs, rhs, rfv); |
|
2471 } |
|
2472 break; |
|
2473 |
|
2474 case 2: |
|
2475 { |
|
2476 if (lhs.index_count () > 2) |
|
2477 retval = assignN (lhs, rhs, rfv); |
|
2478 else |
|
2479 retval = assign2 (lhs, rhs, rfv); |
|
2480 } |
|
2481 break; |
|
2482 |
|
2483 default: |
|
2484 retval = assignN (lhs, rhs, rfv); |
|
2485 break; |
|
2486 } |
|
2487 |
|
2488 return retval; |
|
2489 } |
|
2490 |
|
2491 template <class LT, class RT> |
|
2492 int |
|
2493 assign1 (Array<LT>& lhs, const Array<RT>& rhs, const LT& rfv) |
|
2494 { |
|
2495 int retval = 1; |
|
2496 |
|
2497 idx_vector *tmp = lhs.get_idx (); |
|
2498 |
|
2499 idx_vector lhs_idx = tmp[0]; |
|
2500 |
5275
|
2501 octave_idx_type lhs_len = lhs.length (); |
|
2502 octave_idx_type rhs_len = rhs.length (); |
|
2503 |
|
2504 octave_idx_type n = lhs_idx.freeze (lhs_len, "vector", true, liboctave_wrore_flag); |
4517
|
2505 |
|
2506 if (n != 0) |
|
2507 { |
|
2508 if (rhs_len == n || rhs_len == 1) |
|
2509 { |
5275
|
2510 octave_idx_type max_idx = lhs_idx.max () + 1; |
4517
|
2511 if (max_idx > lhs_len) |
4548
|
2512 lhs.resize_and_fill (max_idx, rfv); |
4517
|
2513 } |
|
2514 |
|
2515 if (rhs_len == n) |
|
2516 { |
5275
|
2517 for (octave_idx_type i = 0; i < n; i++) |
4517
|
2518 { |
5275
|
2519 octave_idx_type ii = lhs_idx.elem (i); |
4517
|
2520 lhs.elem (ii) = rhs.elem (i); |
|
2521 } |
|
2522 } |
|
2523 else if (rhs_len == 1) |
|
2524 { |
|
2525 RT scalar = rhs.elem (0); |
|
2526 |
5275
|
2527 for (octave_idx_type i = 0; i < n; i++) |
4517
|
2528 { |
5275
|
2529 octave_idx_type ii = lhs_idx.elem (i); |
4517
|
2530 lhs.elem (ii) = scalar; |
|
2531 } |
|
2532 } |
|
2533 else |
|
2534 { |
|
2535 (*current_liboctave_error_handler) |
|
2536 ("A(I) = X: X must be a scalar or a vector with same length as I"); |
|
2537 |
|
2538 retval = 0; |
|
2539 } |
|
2540 } |
|
2541 else if (lhs_idx.is_colon ()) |
|
2542 { |
|
2543 if (lhs_len == 0) |
|
2544 { |
|
2545 lhs.resize_no_fill (rhs_len); |
|
2546 |
5275
|
2547 for (octave_idx_type i = 0; i < rhs_len; i++) |
4517
|
2548 lhs.elem (i) = rhs.elem (i); |
|
2549 } |
|
2550 else |
|
2551 (*current_liboctave_error_handler) |
|
2552 ("A(:) = X: A must be the same size as X"); |
|
2553 } |
|
2554 else if (! (rhs_len == 1 || rhs_len == 0)) |
|
2555 { |
|
2556 (*current_liboctave_error_handler) |
|
2557 ("A([]) = X: X must also be an empty matrix or a scalar"); |
|
2558 |
|
2559 retval = 0; |
|
2560 } |
|
2561 |
|
2562 lhs.clear_index (); |
|
2563 |
|
2564 return retval; |
|
2565 } |
|
2566 |
|
2567 #define MAYBE_RESIZE_LHS \ |
|
2568 do \ |
|
2569 { \ |
5275
|
2570 octave_idx_type max_row_idx = idx_i_is_colon ? rhs_nr : idx_i.max () + 1; \ |
|
2571 octave_idx_type max_col_idx = idx_j_is_colon ? rhs_nc : idx_j.max () + 1; \ |
4517
|
2572 \ |
5275
|
2573 octave_idx_type new_nr = max_row_idx > lhs_nr ? max_row_idx : lhs_nr; \ |
|
2574 octave_idx_type new_nc = max_col_idx > lhs_nc ? max_col_idx : lhs_nc; \ |
4517
|
2575 \ |
|
2576 lhs.resize_and_fill (new_nr, new_nc, rfv); \ |
|
2577 } \ |
|
2578 while (0) |
|
2579 |
|
2580 template <class LT, class RT> |
|
2581 int |
|
2582 assign2 (Array<LT>& lhs, const Array<RT>& rhs, const LT& rfv) |
|
2583 { |
|
2584 int retval = 1; |
|
2585 |
|
2586 int n_idx = lhs.index_count (); |
|
2587 |
5275
|
2588 octave_idx_type lhs_nr = lhs.rows (); |
|
2589 octave_idx_type lhs_nc = lhs.cols (); |
4517
|
2590 |
5047
|
2591 Array<RT> xrhs = rhs; |
|
2592 |
5275
|
2593 octave_idx_type rhs_nr = xrhs.rows (); |
|
2594 octave_idx_type rhs_nc = xrhs.cols (); |
5047
|
2595 |
|
2596 if (xrhs.ndims () > 2) |
4707
|
2597 { |
5047
|
2598 xrhs = xrhs.squeeze (); |
|
2599 |
|
2600 dim_vector dv_tmp = xrhs.dims (); |
4709
|
2601 |
4708
|
2602 switch (dv_tmp.length ()) |
4707
|
2603 { |
4708
|
2604 case 1: |
5047
|
2605 // XXX FIXME XXX -- this case should be unnecessary, because |
|
2606 // squeeze should always return an object with 2 dimensions. |
4708
|
2607 if (rhs_nr == 1) |
|
2608 rhs_nc = dv_tmp.elem (0); |
|
2609 break; |
4709
|
2610 |
4708
|
2611 case 2: |
4707
|
2612 rhs_nr = dv_tmp.elem (0); |
|
2613 rhs_nc = dv_tmp.elem (1); |
4708
|
2614 break; |
|
2615 |
|
2616 default: |
|
2617 (*current_liboctave_error_handler) |
|
2618 ("Array<T>::assign2: Dimension mismatch"); |
4709
|
2619 return 0; |
4707
|
2620 } |
|
2621 } |
4517
|
2622 |
|
2623 idx_vector *tmp = lhs.get_idx (); |
|
2624 |
|
2625 idx_vector idx_i; |
|
2626 idx_vector idx_j; |
|
2627 |
|
2628 if (n_idx > 1) |
|
2629 idx_j = tmp[1]; |
|
2630 |
|
2631 if (n_idx > 0) |
|
2632 idx_i = tmp[0]; |
|
2633 |
|
2634 if (n_idx == 2) |
|
2635 { |
5275
|
2636 octave_idx_type n = idx_i.freeze (lhs_nr, "row", true, liboctave_wrore_flag); |
|
2637 |
|
2638 octave_idx_type m = idx_j.freeze (lhs_nc, "column", true, liboctave_wrore_flag); |
4517
|
2639 |
|
2640 int idx_i_is_colon = idx_i.is_colon (); |
|
2641 int idx_j_is_colon = idx_j.is_colon (); |
|
2642 |
|
2643 if (idx_i_is_colon) |
|
2644 n = lhs_nr > 0 ? lhs_nr : rhs_nr; |
|
2645 |
|
2646 if (idx_j_is_colon) |
|
2647 m = lhs_nc > 0 ? lhs_nc : rhs_nc; |
|
2648 |
|
2649 if (idx_i && idx_j) |
|
2650 { |
|
2651 if (rhs_nr == 0 && rhs_nc == 0) |
|
2652 { |
|
2653 lhs.maybe_delete_elements (idx_i, idx_j); |
|
2654 } |
|
2655 else |
|
2656 { |
4534
|
2657 if (rhs_nr == 1 && rhs_nc == 1 && n >= 0 && m >= 0) |
4517
|
2658 { |
4534
|
2659 // No need to do anything if either of the indices |
|
2660 // are empty. |
|
2661 |
|
2662 if (n > 0 && m > 0) |
4517
|
2663 { |
4534
|
2664 MAYBE_RESIZE_LHS; |
|
2665 |
5047
|
2666 RT scalar = xrhs.elem (0, 0); |
4534
|
2667 |
5275
|
2668 for (octave_idx_type j = 0; j < m; j++) |
4517
|
2669 { |
5275
|
2670 octave_idx_type jj = idx_j.elem (j); |
|
2671 for (octave_idx_type i = 0; i < n; i++) |
4534
|
2672 { |
5275
|
2673 octave_idx_type ii = idx_i.elem (i); |
4534
|
2674 lhs.elem (ii, jj) = scalar; |
|
2675 } |
4517
|
2676 } |
|
2677 } |
|
2678 } |
|
2679 else if (n == rhs_nr && m == rhs_nc) |
|
2680 { |
|
2681 if (n > 0 && m > 0) |
|
2682 { |
|
2683 MAYBE_RESIZE_LHS; |
|
2684 |
5275
|
2685 for (octave_idx_type j = 0; j < m; j++) |
4517
|
2686 { |
5275
|
2687 octave_idx_type jj = idx_j.elem (j); |
|
2688 for (octave_idx_type i = 0; i < n; i++) |
4517
|
2689 { |
5275
|
2690 octave_idx_type ii = idx_i.elem (i); |
5047
|
2691 lhs.elem (ii, jj) = xrhs.elem (i, j); |
4517
|
2692 } |
|
2693 } |
|
2694 } |
|
2695 } |
|
2696 else if (n == 0 && m == 0) |
|
2697 { |
|
2698 if (! ((rhs_nr == 1 && rhs_nc == 1) |
5039
|
2699 || (rhs_nr == 0 || rhs_nc == 0))) |
4517
|
2700 { |
|
2701 (*current_liboctave_error_handler) |
|
2702 ("A([], []) = X: X must be an empty matrix or a scalar"); |
|
2703 |
|
2704 retval = 0; |
|
2705 } |
|
2706 } |
|
2707 else |
|
2708 { |
|
2709 (*current_liboctave_error_handler) |
|
2710 ("A(I, J) = X: X must be a scalar or the number of elements in I must"); |
|
2711 (*current_liboctave_error_handler) |
|
2712 ("match the number of rows in X and the number of elements in J must"); |
|
2713 (*current_liboctave_error_handler) |
|
2714 ("match the number of columns in X"); |
|
2715 |
|
2716 retval = 0; |
|
2717 } |
|
2718 } |
|
2719 } |
|
2720 // idx_vector::freeze() printed an error message for us. |
|
2721 } |
|
2722 else if (n_idx == 1) |
|
2723 { |
|
2724 int lhs_is_empty = lhs_nr == 0 || lhs_nc == 0; |
|
2725 |
|
2726 if (lhs_is_empty || (lhs_nr == 1 && lhs_nc == 1)) |
|
2727 { |
5275
|
2728 octave_idx_type lhs_len = lhs.length (); |
|
2729 |
|
2730 octave_idx_type n = idx_i.freeze (lhs_len, 0, true, liboctave_wrore_flag); |
4517
|
2731 |
|
2732 if (idx_i) |
|
2733 { |
|
2734 if (rhs_nr == 0 && rhs_nc == 0) |
|
2735 { |
|
2736 if (n != 0 && (lhs_nr != 0 || lhs_nc != 0)) |
|
2737 lhs.maybe_delete_elements (idx_i); |
|
2738 } |
|
2739 else |
|
2740 { |
|
2741 if (liboctave_wfi_flag) |
|
2742 { |
|
2743 if (lhs_is_empty |
|
2744 && idx_i.is_colon () |
|
2745 && ! (rhs_nr == 1 || rhs_nc == 1)) |
|
2746 { |
|
2747 (*current_liboctave_warning_handler) |
|
2748 ("A(:) = X: X is not a vector or scalar"); |
|
2749 } |
|
2750 else |
|
2751 { |
5275
|
2752 octave_idx_type idx_nr = idx_i.orig_rows (); |
|
2753 octave_idx_type idx_nc = idx_i.orig_columns (); |
4517
|
2754 |
|
2755 if (! (rhs_nr == idx_nr && rhs_nc == idx_nc)) |
|
2756 (*current_liboctave_warning_handler) |
|
2757 ("A(I) = X: X does not have same shape as I"); |
|
2758 } |
|
2759 } |
|
2760 |
5047
|
2761 if (assign1 (lhs, xrhs, rfv)) |
4517
|
2762 { |
5275
|
2763 octave_idx_type len = lhs.length (); |
4517
|
2764 |
|
2765 if (len > 0) |
|
2766 { |
|
2767 // The following behavior is much simplified |
|
2768 // over previous versions of Octave. It |
|
2769 // seems to be compatible with Matlab. |
|
2770 |
|
2771 lhs.dimensions = dim_vector (1, lhs.length ()); |
|
2772 } |
|
2773 else |
|
2774 lhs.dimensions = dim_vector (0, 0); |
|
2775 } |
|
2776 else |
|
2777 retval = 0; |
|
2778 } |
|
2779 } |
|
2780 // idx_vector::freeze() printed an error message for us. |
|
2781 } |
|
2782 else if (lhs_nr == 1) |
|
2783 { |
|
2784 idx_i.freeze (lhs_nc, "vector", true, liboctave_wrore_flag); |
|
2785 |
|
2786 if (idx_i) |
|
2787 { |
|
2788 if (rhs_nr == 0 && rhs_nc == 0) |
|
2789 lhs.maybe_delete_elements (idx_i); |
|
2790 else |
|
2791 { |
5047
|
2792 if (assign1 (lhs, xrhs, rfv)) |
4517
|
2793 lhs.dimensions = dim_vector (1, lhs.length ()); |
|
2794 else |
|
2795 retval = 0; |
|
2796 } |
|
2797 } |
|
2798 // idx_vector::freeze() printed an error message for us. |
|
2799 } |
|
2800 else if (lhs_nc == 1) |
|
2801 { |
|
2802 idx_i.freeze (lhs_nr, "vector", true, liboctave_wrore_flag); |
|
2803 |
|
2804 if (idx_i) |
|
2805 { |
|
2806 if (rhs_nr == 0 && rhs_nc == 0) |
|
2807 lhs.maybe_delete_elements (idx_i); |
|
2808 else |
|
2809 { |
5047
|
2810 if (assign1 (lhs, xrhs, rfv)) |
4517
|
2811 lhs.dimensions = dim_vector (lhs.length (), 1); |
|
2812 else |
|
2813 retval = 0; |
|
2814 } |
|
2815 } |
|
2816 // idx_vector::freeze() printed an error message for us. |
|
2817 } |
|
2818 else |
|
2819 { |
|
2820 if (liboctave_wfi_flag |
|
2821 && ! (idx_i.is_colon () |
|
2822 || (idx_i.one_zero_only () |
|
2823 && idx_i.orig_rows () == lhs_nr |
|
2824 && idx_i.orig_columns () == lhs_nc))) |
|
2825 (*current_liboctave_warning_handler) |
|
2826 ("single index used for matrix"); |
|
2827 |
5275
|
2828 octave_idx_type len = idx_i.freeze (lhs_nr * lhs_nc, "matrix"); |
4517
|
2829 |
|
2830 if (idx_i) |
|
2831 { |
4756
|
2832 if (rhs_nr == 0 && rhs_nc == 0) |
|
2833 lhs.maybe_delete_elements (idx_i); |
|
2834 else if (len == 0) |
4517
|
2835 { |
|
2836 if (! ((rhs_nr == 1 && rhs_nc == 1) |
5039
|
2837 || (rhs_nr == 0 || rhs_nc == 0))) |
4517
|
2838 (*current_liboctave_error_handler) |
|
2839 ("A([]) = X: X must be an empty matrix or scalar"); |
|
2840 } |
|
2841 else if (len == rhs_nr * rhs_nc) |
|
2842 { |
5275
|
2843 octave_idx_type k = 0; |
|
2844 for (octave_idx_type j = 0; j < rhs_nc; j++) |
4517
|
2845 { |
5275
|
2846 for (octave_idx_type i = 0; i < rhs_nr; i++) |
4517
|
2847 { |
5275
|
2848 octave_idx_type ii = idx_i.elem (k++); |
|
2849 octave_idx_type fr = ii % lhs_nr; |
|
2850 octave_idx_type fc = (ii - fr) / lhs_nr; |
5047
|
2851 lhs.elem (fr, fc) = xrhs.elem (i, j); |
4517
|
2852 } |
|
2853 } |
|
2854 } |
4716
|
2855 else if (rhs_nr == 1 && rhs_nc == 1) |
4517
|
2856 { |
|
2857 RT scalar = rhs.elem (0, 0); |
|
2858 |
5275
|
2859 for (octave_idx_type i = 0; i < len; i++) |
4517
|
2860 { |
5275
|
2861 octave_idx_type ii = idx_i.elem (i); |
4716
|
2862 lhs.elem (ii) = scalar; |
4517
|
2863 } |
|
2864 } |
|
2865 else |
|
2866 { |
|
2867 (*current_liboctave_error_handler) |
|
2868 ("A(I) = X: X must be a scalar or a matrix with the same size as I"); |
|
2869 |
|
2870 retval = 0; |
|
2871 } |
|
2872 } |
|
2873 // idx_vector::freeze() printed an error message for us. |
|
2874 } |
|
2875 } |
|
2876 else |
|
2877 { |
|
2878 (*current_liboctave_error_handler) |
|
2879 ("invalid number of indices for matrix expression"); |
|
2880 |
|
2881 retval = 0; |
|
2882 } |
|
2883 |
|
2884 lhs.clear_index (); |
|
2885 |
|
2886 return retval; |
|
2887 } |
|
2888 |
|
2889 template <class LT, class RT> |
|
2890 int |
|
2891 assignN (Array<LT>& lhs, const Array<RT>& rhs, const LT& rfv) |
|
2892 { |
|
2893 int retval = 1; |
|
2894 |
4746
|
2895 dim_vector rhs_dims = rhs.dims (); |
|
2896 |
5275
|
2897 octave_idx_type rhs_dims_len = rhs_dims.length (); |
4746
|
2898 |
|
2899 bool rhs_is_scalar = is_scalar (rhs_dims); |
|
2900 |
4517
|
2901 int n_idx = lhs.index_count (); |
|
2902 |
4745
|
2903 idx_vector *idx_vex = lhs.get_idx (); |
|
2904 |
|
2905 Array<idx_vector> idx = conv_to_array (idx_vex, n_idx); |
4517
|
2906 |
4743
|
2907 if (rhs_dims_len == 2 && rhs_dims(0) == 0 && rhs_dims(1) == 0) |
4517
|
2908 { |
|
2909 lhs.maybe_delete_elements (idx, rfv); |
|
2910 } |
5285
|
2911 else if (n_idx == 0) |
|
2912 { |
|
2913 (*current_liboctave_error_handler) |
|
2914 ("invalid number of indices for matrix expression"); |
|
2915 |
|
2916 retval = 0; |
|
2917 } |
4657
|
2918 else if (n_idx == 1) |
4517
|
2919 { |
4657
|
2920 idx_vector iidx = idx(0); |
|
2921 |
|
2922 if (liboctave_wfi_flag |
|
2923 && ! (iidx.is_colon () |
|
2924 || (iidx.one_zero_only () |
|
2925 && iidx.orig_dimensions () == lhs.dims ()))) |
|
2926 (*current_liboctave_warning_handler) |
4746
|
2927 ("single index used for N-d array"); |
4657
|
2928 |
5275
|
2929 octave_idx_type lhs_len = lhs.length (); |
|
2930 |
|
2931 octave_idx_type len = iidx.freeze (lhs_len, "N-d arrray"); |
4657
|
2932 |
|
2933 if (iidx) |
4533
|
2934 { |
4657
|
2935 if (len == 0) |
4656
|
2936 { |
5039
|
2937 if (! (rhs_dims.all_ones () || rhs_dims.any_zero ())) |
4743
|
2938 { |
|
2939 (*current_liboctave_error_handler) |
|
2940 ("A([]) = X: X must be an empty matrix or scalar"); |
|
2941 |
|
2942 retval = 0; |
|
2943 } |
4657
|
2944 } |
|
2945 else if (len == rhs.length ()) |
|
2946 { |
5275
|
2947 for (octave_idx_type i = 0; i < len; i++) |
4656
|
2948 { |
5275
|
2949 octave_idx_type ii = iidx.elem (i); |
4657
|
2950 |
|
2951 lhs.elem (ii) = rhs.elem (i); |
4656
|
2952 } |
|
2953 } |
4716
|
2954 else if (rhs_is_scalar) |
4657
|
2955 { |
|
2956 RT scalar = rhs.elem (0); |
|
2957 |
5275
|
2958 for (octave_idx_type i = 0; i < len; i++) |
4657
|
2959 { |
5275
|
2960 octave_idx_type ii = iidx.elem (i); |
4657
|
2961 |
|
2962 lhs.elem (ii) = scalar; |
|
2963 } |
|
2964 } |
|
2965 else |
|
2966 { |
|
2967 (*current_liboctave_error_handler) |
4702
|
2968 ("A(I) = X: X must be a scalar or a matrix with the same size as I"); |
|
2969 |
4657
|
2970 retval = 0; |
|
2971 } |
|
2972 |
4656
|
2973 // idx_vector::freeze() printed an error message for us. |
4533
|
2974 } |
4702
|
2975 } |
4743
|
2976 else |
4702
|
2977 { |
4746
|
2978 // Maybe expand to more dimensions. |
|
2979 |
|
2980 dim_vector lhs_dims = lhs.dims (); |
|
2981 |
5275
|
2982 octave_idx_type lhs_dims_len = lhs_dims.length (); |
4746
|
2983 |
|
2984 dim_vector final_lhs_dims = lhs_dims; |
|
2985 |
|
2986 dim_vector frozen_len; |
|
2987 |
5275
|
2988 octave_idx_type orig_lhs_dims_len = lhs_dims_len; |
4747
|
2989 |
|
2990 bool orig_empty = lhs_dims.all_zero (); |
|
2991 |
|
2992 if (n_idx < lhs_dims_len) |
4517
|
2993 { |
5052
|
2994 // Collapse dimensions beyond last index. Note that we |
|
2995 // delay resizing LHS until we know that the assignment will |
|
2996 // succeed. |
4747
|
2997 |
|
2998 if (liboctave_wfi_flag && ! (idx(n_idx-1).is_colon ())) |
|
2999 (*current_liboctave_warning_handler) |
|
3000 ("fewer indices than dimensions for N-d array"); |
|
3001 |
|
3002 for (int i = n_idx; i < lhs_dims_len; i++) |
|
3003 lhs_dims(n_idx-1) *= lhs_dims(i); |
|
3004 |
|
3005 lhs_dims.resize (n_idx); |
|
3006 |
|
3007 lhs_dims_len = lhs_dims.length (); |
|
3008 } |
|
3009 |
|
3010 // Resize. |
|
3011 |
|
3012 dim_vector new_dims; |
|
3013 new_dims.resize (n_idx); |
|
3014 |
5264
|
3015 if (orig_empty) |
4747
|
3016 { |
5264
|
3017 int k = 0; |
|
3018 for (int i = 0; i < n_idx; i++) |
4746
|
3019 { |
4747
|
3020 // If index is a colon, resizing to RHS dimensions is |
|
3021 // allowed because we started out empty. |
4746
|
3022 |
5264
|
3023 if (idx(i).is_colon ()) |
|
3024 { |
|
3025 if (k < rhs_dims.length ()) |
|
3026 new_dims(i) = rhs_dims(k++); |
|
3027 else |
|
3028 { |
|
3029 (*current_liboctave_error_handler) |
|
3030 ("A(IDX-LIST) = RHS: A previously undefined and more colons in IDX-LIST than dimensions for RHS"); |
|
3031 return retval; |
|
3032 } |
|
3033 } |
|
3034 else |
|
3035 new_dims(i) = idx(i).max () + 1; |
4746
|
3036 } |
5264
|
3037 } |
|
3038 else |
|
3039 { |
|
3040 for (int i = 0; i < n_idx; i++) |
4746
|
3041 { |
4747
|
3042 // We didn't start out with all zero dimensions, so if |
|
3043 // index is a colon, it refers to the current LHS |
|
3044 // dimension. Otherwise, it is OK to enlarge to a |
5264
|
3045 // dimension given by the largest index, but if that |
4898
|
3046 // index is a colon the new dimension is singleton. |
4749
|
3047 |
|
3048 if (i < lhs_dims_len |
|
3049 && (idx(i).is_colon () || idx(i).max () < lhs_dims(i))) |
|
3050 new_dims(i) = lhs_dims(i); |
|
3051 else if (! idx(i).is_colon ()) |
|
3052 new_dims(i) = idx(i).max () + 1; |
|
3053 else |
4898
|
3054 new_dims(i) = 1; |
4745
|
3055 } |
4747
|
3056 } |
|
3057 |
4749
|
3058 if (retval != 0) |
4747
|
3059 { |
4749
|
3060 if (! orig_empty |
|
3061 && n_idx < orig_lhs_dims_len |
|
3062 && new_dims(n_idx-1) != lhs_dims(n_idx-1)) |
4702
|
3063 { |
4749
|
3064 // We reshaped and the last dimension changed. This has to |
|
3065 // be an error, because we don't know how to undo that |
|
3066 // later... |
|
3067 |
|
3068 (*current_liboctave_error_handler) |
|
3069 ("array index %d (= %d) for assignment requires invalid resizing operation", |
|
3070 n_idx, new_dims(n_idx-1)); |
|
3071 |
|
3072 retval = 0; |
4743
|
3073 } |
|
3074 else |
|
3075 { |
5052
|
3076 // Determine final dimensions for LHS and reset the |
|
3077 // current size of the LHS. Note that we delay actually |
|
3078 // resizing LHS until we know that the assignment will |
|
3079 // succeed. |
|
3080 |
4749
|
3081 if (n_idx < orig_lhs_dims_len) |
4743
|
3082 { |
4749
|
3083 for (int i = 0; i < n_idx-1; i++) |
|
3084 final_lhs_dims(i) = new_dims(i); |
4747
|
3085 } |
|
3086 else |
4749
|
3087 final_lhs_dims = new_dims; |
|
3088 |
5052
|
3089 lhs_dims = new_dims; |
4796
|
3090 |
4749
|
3091 lhs_dims_len = lhs_dims.length (); |
|
3092 |
|
3093 frozen_len = freeze (idx, lhs_dims, true); |
|
3094 |
|
3095 if (rhs_is_scalar) |
4747
|
3096 { |
5052
|
3097 lhs.resize_and_fill (new_dims, rfv); |
|
3098 |
4747
|
3099 if (! final_lhs_dims.any_zero ()) |
|
3100 { |
5275
|
3101 octave_idx_type n = Array<LT>::get_size (frozen_len); |
|
3102 |
|
3103 Array<octave_idx_type> result_idx (lhs_dims_len, 0); |
4747
|
3104 |
4749
|
3105 RT scalar = rhs.elem (0); |
|
3106 |
5275
|
3107 for (octave_idx_type i = 0; i < n; i++) |
4747
|
3108 { |
5275
|
3109 Array<octave_idx_type> elt_idx = get_elt_idx (idx, result_idx); |
4747
|
3110 |
4749
|
3111 lhs.elem (elt_idx) = scalar; |
4747
|
3112 |
|
3113 increment_index (result_idx, frozen_len); |
|
3114 } |
|
3115 } |
4743
|
3116 } |
4749
|
3117 else |
|
3118 { |
|
3119 // RHS is matrix or higher dimension. |
|
3120 |
5275
|
3121 octave_idx_type n = Array<LT>::get_size (frozen_len); |
5264
|
3122 |
|
3123 if (n != rhs.numel ()) |
4749
|
3124 { |
|
3125 (*current_liboctave_error_handler) |
|
3126 ("A(IDX-LIST) = X: X must be a scalar or size of X must equal number of elements indexed by IDX-LIST"); |
|
3127 |
|
3128 retval = 0; |
|
3129 } |
|
3130 else |
|
3131 { |
5052
|
3132 lhs.resize_and_fill (new_dims, rfv); |
|
3133 |
4749
|
3134 if (! final_lhs_dims.any_zero ()) |
|
3135 { |
5265
|
3136 n = Array<LT>::get_size (frozen_len); |
4749
|
3137 |
5275
|
3138 Array<octave_idx_type> result_idx (lhs_dims_len, 0); |
|
3139 |
|
3140 for (octave_idx_type i = 0; i < n; i++) |
4749
|
3141 { |
5275
|
3142 Array<octave_idx_type> elt_idx = get_elt_idx (idx, result_idx); |
4749
|
3143 |
|
3144 lhs.elem (elt_idx) = rhs.elem (i); |
|
3145 |
|
3146 increment_index (result_idx, frozen_len); |
|
3147 } |
|
3148 } |
|
3149 } |
|
3150 } |
4743
|
3151 } |
4517
|
3152 } |
4745
|
3153 |
5052
|
3154 if (retval != 0) |
|
3155 lhs.resize (final_lhs_dims); |
4517
|
3156 } |
|
3157 |
5052
|
3158 if (retval != 0) |
|
3159 lhs.chop_trailing_singletons (); |
4757
|
3160 |
4517
|
3161 lhs.clear_index (); |
|
3162 |
|
3163 return retval; |
|
3164 } |
|
3165 |
|
3166 template <class T> |
|
3167 void |
3933
|
3168 Array<T>::print_info (std::ostream& os, const std::string& prefix) const |
|
3169 { |
|
3170 os << prefix << "rep address: " << rep << "\n" |
|
3171 << prefix << "rep->len: " << rep->len << "\n" |
|
3172 << prefix << "rep->data: " << static_cast<void *> (rep->data) << "\n" |
|
3173 << prefix << "rep->count: " << rep->count << "\n"; |
4513
|
3174 |
|
3175 // 2D info: |
|
3176 // |
4657
|
3177 // << pefix << "rows: " << rows () << "\n" |
4513
|
3178 // << prefix << "cols: " << cols () << "\n"; |
3933
|
3179 } |
|
3180 |
237
|
3181 /* |
|
3182 ;;; Local Variables: *** |
|
3183 ;;; mode: C++ *** |
|
3184 ;;; End: *** |
|
3185 */ |