4514
|
1 // N-D Array manipulations. |
|
2 /* |
|
3 |
|
4 Copyright (C) 1996, 1997 John W. Eaton |
|
5 |
|
6 This file is part of Octave. |
|
7 |
|
8 Octave is free software; you can redistribute it and/or modify it |
|
9 under the terms of the GNU General Public License as published by the |
|
10 Free Software Foundation; either version 2, or (at your option) any |
|
11 later version. |
|
12 |
|
13 Octave is distributed in the hope that it will be useful, but WITHOUT |
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
16 for more details. |
|
17 |
|
18 You should have received a copy of the GNU General Public License |
|
19 along with Octave; see the file COPYING. If not, write to the Free |
5307
|
20 Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
|
21 02110-1301, USA. |
4514
|
22 |
|
23 */ |
|
24 |
|
25 #ifdef HAVE_CONFIG_H |
|
26 #include <config.h> |
|
27 #endif |
|
28 |
4687
|
29 #include <cfloat> |
5164
|
30 |
4780
|
31 #include <vector> |
4687
|
32 |
4588
|
33 #include "Array-util.h" |
4514
|
34 #include "CNDArray.h" |
|
35 #include "mx-base.h" |
4773
|
36 #include "f77-fcn.h" |
4514
|
37 #include "lo-ieee.h" |
4687
|
38 #include "lo-mappers.h" |
4514
|
39 |
4773
|
40 #if defined (HAVE_FFTW3) |
4780
|
41 #include "oct-fftw.h" |
4773
|
42 #else |
|
43 extern "C" |
|
44 { |
|
45 // Note that the original complex fft routines were not written for |
|
46 // double complex arguments. They have been modified by adding an |
|
47 // implicit double precision (a-h,o-z) statement at the beginning of |
|
48 // each subroutine. |
|
49 |
|
50 F77_RET_T |
5275
|
51 F77_FUNC (cffti, CFFTI) (const octave_idx_type&, Complex*); |
4773
|
52 |
|
53 F77_RET_T |
5275
|
54 F77_FUNC (cfftf, CFFTF) (const octave_idx_type&, Complex*, Complex*); |
4773
|
55 |
|
56 F77_RET_T |
5275
|
57 F77_FUNC (cfftb, CFFTB) (const octave_idx_type&, Complex*, Complex*); |
4773
|
58 } |
|
59 #endif |
|
60 |
|
61 #if defined (HAVE_FFTW3) |
|
62 ComplexNDArray |
|
63 ComplexNDArray::fourier (int dim) const |
|
64 { |
|
65 dim_vector dv = dims (); |
|
66 |
|
67 if (dim > dv.length () || dim < 0) |
|
68 return ComplexNDArray (); |
|
69 |
5275
|
70 octave_idx_type stride = 1; |
|
71 octave_idx_type n = dv(dim); |
4773
|
72 |
|
73 for (int i = 0; i < dim; i++) |
|
74 stride *= dv(i); |
|
75 |
5275
|
76 octave_idx_type howmany = numel () / dv (dim); |
4773
|
77 howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); |
5275
|
78 octave_idx_type nloop = (stride == 1 ? 1 : numel () / dv (dim) / stride); |
|
79 octave_idx_type dist = (stride == 1 ? n : 1); |
4773
|
80 |
|
81 const Complex *in (fortran_vec ()); |
|
82 ComplexNDArray retval (dv); |
|
83 Complex *out (retval.fortran_vec ()); |
|
84 |
|
85 // Need to be careful here about the distance between fft's |
5275
|
86 for (octave_idx_type k = 0; k < nloop; k++) |
4773
|
87 octave_fftw::fft (in + k * stride * n, out + k * stride * n, |
|
88 n, howmany, stride, dist); |
|
89 |
|
90 return retval; |
|
91 } |
|
92 |
|
93 ComplexNDArray |
4816
|
94 ComplexNDArray::ifourier (int dim) const |
4773
|
95 { |
|
96 dim_vector dv = dims (); |
|
97 |
|
98 if (dim > dv.length () || dim < 0) |
|
99 return ComplexNDArray (); |
|
100 |
5275
|
101 octave_idx_type stride = 1; |
|
102 octave_idx_type n = dv(dim); |
4773
|
103 |
|
104 for (int i = 0; i < dim; i++) |
|
105 stride *= dv(i); |
|
106 |
5275
|
107 octave_idx_type howmany = numel () / dv (dim); |
4773
|
108 howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); |
5275
|
109 octave_idx_type nloop = (stride == 1 ? 1 : numel () / dv (dim) / stride); |
|
110 octave_idx_type dist = (stride == 1 ? n : 1); |
4773
|
111 |
|
112 const Complex *in (fortran_vec ()); |
|
113 ComplexNDArray retval (dv); |
|
114 Complex *out (retval.fortran_vec ()); |
|
115 |
|
116 // Need to be careful here about the distance between fft's |
5275
|
117 for (octave_idx_type k = 0; k < nloop; k++) |
4773
|
118 octave_fftw::ifft (in + k * stride * n, out + k * stride * n, |
|
119 n, howmany, stride, dist); |
|
120 |
|
121 return retval; |
|
122 } |
|
123 |
|
124 ComplexNDArray |
|
125 ComplexNDArray::fourier2d (void) const |
|
126 { |
|
127 dim_vector dv = dims(); |
|
128 if (dv.length () < 2) |
|
129 return ComplexNDArray (); |
|
130 |
|
131 dim_vector dv2(dv(0), dv(1)); |
|
132 const Complex *in = fortran_vec (); |
|
133 ComplexNDArray retval (dv); |
|
134 Complex *out = retval.fortran_vec (); |
5275
|
135 octave_idx_type howmany = numel() / dv(0) / dv(1); |
|
136 octave_idx_type dist = dv(0) * dv(1); |
4773
|
137 |
5275
|
138 for (octave_idx_type i=0; i < howmany; i++) |
4773
|
139 octave_fftw::fftNd (in + i*dist, out + i*dist, 2, dv2); |
|
140 |
|
141 return retval; |
|
142 } |
|
143 |
|
144 ComplexNDArray |
|
145 ComplexNDArray::ifourier2d (void) const |
|
146 { |
|
147 dim_vector dv = dims(); |
|
148 if (dv.length () < 2) |
|
149 return ComplexNDArray (); |
|
150 |
|
151 dim_vector dv2(dv(0), dv(1)); |
|
152 const Complex *in = fortran_vec (); |
|
153 ComplexNDArray retval (dv); |
|
154 Complex *out = retval.fortran_vec (); |
5275
|
155 octave_idx_type howmany = numel() / dv(0) / dv(1); |
|
156 octave_idx_type dist = dv(0) * dv(1); |
4773
|
157 |
5275
|
158 for (octave_idx_type i=0; i < howmany; i++) |
4773
|
159 octave_fftw::ifftNd (in + i*dist, out + i*dist, 2, dv2); |
|
160 |
|
161 return retval; |
|
162 } |
|
163 |
|
164 ComplexNDArray |
|
165 ComplexNDArray::fourierNd (void) const |
|
166 { |
|
167 dim_vector dv = dims (); |
|
168 int rank = dv.length (); |
|
169 |
|
170 const Complex *in (fortran_vec ()); |
|
171 ComplexNDArray retval (dv); |
|
172 Complex *out (retval.fortran_vec ()); |
|
173 |
|
174 octave_fftw::fftNd (in, out, rank, dv); |
|
175 |
|
176 return retval; |
|
177 } |
|
178 |
|
179 ComplexNDArray |
|
180 ComplexNDArray::ifourierNd (void) const |
|
181 { |
|
182 dim_vector dv = dims (); |
|
183 int rank = dv.length (); |
|
184 |
|
185 const Complex *in (fortran_vec ()); |
|
186 ComplexNDArray retval (dv); |
|
187 Complex *out (retval.fortran_vec ()); |
|
188 |
|
189 octave_fftw::ifftNd (in, out, rank, dv); |
|
190 |
|
191 return retval; |
|
192 } |
|
193 |
|
194 #else |
|
195 ComplexNDArray |
|
196 ComplexNDArray::fourier (int dim) const |
|
197 { |
|
198 dim_vector dv = dims (); |
|
199 |
|
200 if (dim > dv.length () || dim < 0) |
|
201 return ComplexNDArray (); |
|
202 |
|
203 ComplexNDArray retval (dv); |
5275
|
204 octave_idx_type npts = dv(dim); |
|
205 octave_idx_type nn = 4*npts+15; |
4773
|
206 Array<Complex> wsave (nn); |
|
207 Complex *pwsave = wsave.fortran_vec (); |
|
208 |
|
209 OCTAVE_LOCAL_BUFFER (Complex, tmp, npts); |
|
210 |
5275
|
211 octave_idx_type stride = 1; |
4773
|
212 |
|
213 for (int i = 0; i < dim; i++) |
|
214 stride *= dv(i); |
|
215 |
5275
|
216 octave_idx_type howmany = numel () / npts; |
4773
|
217 howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); |
5275
|
218 octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
219 octave_idx_type dist = (stride == 1 ? npts : 1); |
4773
|
220 |
|
221 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
222 |
5275
|
223 for (octave_idx_type k = 0; k < nloop; k++) |
4773
|
224 { |
5275
|
225 for (octave_idx_type j = 0; j < howmany; j++) |
4773
|
226 { |
|
227 OCTAVE_QUIT; |
|
228 |
5275
|
229 for (octave_idx_type i = 0; i < npts; i++) |
4773
|
230 tmp[i] = elem((i + k*npts)*stride + j*dist); |
|
231 |
|
232 F77_FUNC (cfftf, CFFTF) (npts, tmp, pwsave); |
|
233 |
5275
|
234 for (octave_idx_type i = 0; i < npts; i++) |
4773
|
235 retval ((i + k*npts)*stride + j*dist) = tmp[i]; |
|
236 } |
|
237 } |
|
238 |
|
239 return retval; |
|
240 } |
|
241 |
|
242 ComplexNDArray |
|
243 ComplexNDArray::ifourier (int dim) const |
|
244 { |
|
245 dim_vector dv = dims (); |
|
246 |
|
247 if (dim > dv.length () || dim < 0) |
|
248 return ComplexNDArray (); |
|
249 |
|
250 ComplexNDArray retval (dv); |
5275
|
251 octave_idx_type npts = dv(dim); |
|
252 octave_idx_type nn = 4*npts+15; |
4773
|
253 Array<Complex> wsave (nn); |
|
254 Complex *pwsave = wsave.fortran_vec (); |
|
255 |
|
256 OCTAVE_LOCAL_BUFFER (Complex, tmp, npts); |
|
257 |
5275
|
258 octave_idx_type stride = 1; |
4773
|
259 |
|
260 for (int i = 0; i < dim; i++) |
|
261 stride *= dv(i); |
|
262 |
5275
|
263 octave_idx_type howmany = numel () / npts; |
4773
|
264 howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); |
5275
|
265 octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
266 octave_idx_type dist = (stride == 1 ? npts : 1); |
4773
|
267 |
|
268 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
269 |
5275
|
270 for (octave_idx_type k = 0; k < nloop; k++) |
4773
|
271 { |
5275
|
272 for (octave_idx_type j = 0; j < howmany; j++) |
4773
|
273 { |
|
274 OCTAVE_QUIT; |
|
275 |
5275
|
276 for (octave_idx_type i = 0; i < npts; i++) |
4773
|
277 tmp[i] = elem((i + k*npts)*stride + j*dist); |
|
278 |
|
279 F77_FUNC (cfftb, CFFTB) (npts, tmp, pwsave); |
|
280 |
5275
|
281 for (octave_idx_type i = 0; i < npts; i++) |
4773
|
282 retval ((i + k*npts)*stride + j*dist) = tmp[i] / |
|
283 static_cast<double> (npts); |
|
284 } |
|
285 } |
|
286 |
|
287 return retval; |
|
288 } |
|
289 |
|
290 ComplexNDArray |
|
291 ComplexNDArray::fourier2d (void) const |
|
292 { |
|
293 dim_vector dv = dims (); |
|
294 dim_vector dv2 (dv(0), dv(1)); |
|
295 int rank = 2; |
|
296 ComplexNDArray retval (*this); |
5275
|
297 octave_idx_type stride = 1; |
4773
|
298 |
|
299 for (int i = 0; i < rank; i++) |
|
300 { |
5275
|
301 octave_idx_type npts = dv2(i); |
|
302 octave_idx_type nn = 4*npts+15; |
4773
|
303 Array<Complex> wsave (nn); |
|
304 Complex *pwsave = wsave.fortran_vec (); |
|
305 Array<Complex> row (npts); |
|
306 Complex *prow = row.fortran_vec (); |
|
307 |
5275
|
308 octave_idx_type howmany = numel () / npts; |
4773
|
309 howmany = (stride == 1 ? howmany : |
|
310 (howmany > stride ? stride : howmany)); |
5275
|
311 octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
312 octave_idx_type dist = (stride == 1 ? npts : 1); |
4773
|
313 |
|
314 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
315 |
5275
|
316 for (octave_idx_type k = 0; k < nloop; k++) |
4773
|
317 { |
5275
|
318 for (octave_idx_type j = 0; j < howmany; j++) |
4773
|
319 { |
|
320 OCTAVE_QUIT; |
|
321 |
5275
|
322 for (octave_idx_type l = 0; l < npts; l++) |
4773
|
323 prow[l] = retval ((l + k*npts)*stride + j*dist); |
|
324 |
|
325 F77_FUNC (cfftf, CFFTF) (npts, prow, pwsave); |
|
326 |
5275
|
327 for (octave_idx_type l = 0; l < npts; l++) |
4773
|
328 retval ((l + k*npts)*stride + j*dist) = prow[l]; |
|
329 } |
|
330 } |
|
331 |
|
332 stride *= dv2(i); |
|
333 } |
|
334 |
|
335 return retval; |
|
336 } |
|
337 |
|
338 ComplexNDArray |
|
339 ComplexNDArray::ifourier2d (void) const |
|
340 { |
|
341 dim_vector dv = dims(); |
|
342 dim_vector dv2 (dv(0), dv(1)); |
|
343 int rank = 2; |
|
344 ComplexNDArray retval (*this); |
5275
|
345 octave_idx_type stride = 1; |
4773
|
346 |
|
347 for (int i = 0; i < rank; i++) |
|
348 { |
5275
|
349 octave_idx_type npts = dv2(i); |
|
350 octave_idx_type nn = 4*npts+15; |
4773
|
351 Array<Complex> wsave (nn); |
|
352 Complex *pwsave = wsave.fortran_vec (); |
|
353 Array<Complex> row (npts); |
|
354 Complex *prow = row.fortran_vec (); |
|
355 |
5275
|
356 octave_idx_type howmany = numel () / npts; |
4773
|
357 howmany = (stride == 1 ? howmany : |
|
358 (howmany > stride ? stride : howmany)); |
5275
|
359 octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
360 octave_idx_type dist = (stride == 1 ? npts : 1); |
4773
|
361 |
|
362 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
363 |
5275
|
364 for (octave_idx_type k = 0; k < nloop; k++) |
4773
|
365 { |
5275
|
366 for (octave_idx_type j = 0; j < howmany; j++) |
4773
|
367 { |
|
368 OCTAVE_QUIT; |
|
369 |
5275
|
370 for (octave_idx_type l = 0; l < npts; l++) |
4773
|
371 prow[l] = retval ((l + k*npts)*stride + j*dist); |
|
372 |
|
373 F77_FUNC (cfftb, CFFTB) (npts, prow, pwsave); |
|
374 |
5275
|
375 for (octave_idx_type l = 0; l < npts; l++) |
4773
|
376 retval ((l + k*npts)*stride + j*dist) = prow[l] / |
|
377 static_cast<double> (npts); |
|
378 } |
|
379 } |
|
380 |
|
381 stride *= dv2(i); |
|
382 } |
|
383 |
|
384 return retval; |
|
385 } |
|
386 |
|
387 ComplexNDArray |
|
388 ComplexNDArray::fourierNd (void) const |
|
389 { |
|
390 dim_vector dv = dims (); |
|
391 int rank = dv.length (); |
|
392 ComplexNDArray retval (*this); |
5275
|
393 octave_idx_type stride = 1; |
4773
|
394 |
|
395 for (int i = 0; i < rank; i++) |
|
396 { |
5275
|
397 octave_idx_type npts = dv(i); |
|
398 octave_idx_type nn = 4*npts+15; |
4773
|
399 Array<Complex> wsave (nn); |
|
400 Complex *pwsave = wsave.fortran_vec (); |
|
401 Array<Complex> row (npts); |
|
402 Complex *prow = row.fortran_vec (); |
|
403 |
5275
|
404 octave_idx_type howmany = numel () / npts; |
4773
|
405 howmany = (stride == 1 ? howmany : |
|
406 (howmany > stride ? stride : howmany)); |
5275
|
407 octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
408 octave_idx_type dist = (stride == 1 ? npts : 1); |
4773
|
409 |
|
410 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
411 |
5275
|
412 for (octave_idx_type k = 0; k < nloop; k++) |
4773
|
413 { |
5275
|
414 for (octave_idx_type j = 0; j < howmany; j++) |
4773
|
415 { |
|
416 OCTAVE_QUIT; |
|
417 |
5275
|
418 for (octave_idx_type l = 0; l < npts; l++) |
4773
|
419 prow[l] = retval ((l + k*npts)*stride + j*dist); |
|
420 |
|
421 F77_FUNC (cfftf, CFFTF) (npts, prow, pwsave); |
|
422 |
5275
|
423 for (octave_idx_type l = 0; l < npts; l++) |
4773
|
424 retval ((l + k*npts)*stride + j*dist) = prow[l]; |
|
425 } |
|
426 } |
|
427 |
|
428 stride *= dv(i); |
|
429 } |
|
430 |
|
431 return retval; |
|
432 } |
|
433 |
|
434 ComplexNDArray |
|
435 ComplexNDArray::ifourierNd (void) const |
|
436 { |
|
437 dim_vector dv = dims (); |
|
438 int rank = dv.length (); |
|
439 ComplexNDArray retval (*this); |
5275
|
440 octave_idx_type stride = 1; |
4773
|
441 |
|
442 for (int i = 0; i < rank; i++) |
|
443 { |
5275
|
444 octave_idx_type npts = dv(i); |
|
445 octave_idx_type nn = 4*npts+15; |
4773
|
446 Array<Complex> wsave (nn); |
|
447 Complex *pwsave = wsave.fortran_vec (); |
|
448 Array<Complex> row (npts); |
|
449 Complex *prow = row.fortran_vec (); |
|
450 |
5275
|
451 octave_idx_type howmany = numel () / npts; |
4773
|
452 howmany = (stride == 1 ? howmany : |
|
453 (howmany > stride ? stride : howmany)); |
5275
|
454 octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
455 octave_idx_type dist = (stride == 1 ? npts : 1); |
4773
|
456 |
|
457 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
458 |
5275
|
459 for (octave_idx_type k = 0; k < nloop; k++) |
4773
|
460 { |
5275
|
461 for (octave_idx_type j = 0; j < howmany; j++) |
4773
|
462 { |
|
463 OCTAVE_QUIT; |
|
464 |
5275
|
465 for (octave_idx_type l = 0; l < npts; l++) |
4773
|
466 prow[l] = retval ((l + k*npts)*stride + j*dist); |
|
467 |
|
468 F77_FUNC (cfftb, CFFTB) (npts, prow, pwsave); |
|
469 |
5275
|
470 for (octave_idx_type l = 0; l < npts; l++) |
4773
|
471 retval ((l + k*npts)*stride + j*dist) = prow[l] / |
|
472 static_cast<double> (npts); |
|
473 } |
|
474 } |
|
475 |
|
476 stride *= dv(i); |
|
477 } |
|
478 |
|
479 return retval; |
|
480 } |
|
481 |
|
482 #endif |
|
483 |
4543
|
484 // unary operations |
|
485 |
|
486 boolNDArray |
|
487 ComplexNDArray::operator ! (void) const |
|
488 { |
|
489 boolNDArray b (dims ()); |
|
490 |
5275
|
491 for (octave_idx_type i = 0; i < length (); i++) |
5139
|
492 b.elem (i) = elem (i) == 0.0; |
4543
|
493 |
|
494 return b; |
|
495 } |
|
496 |
4514
|
497 // XXX FIXME XXX -- this is not quite the right thing. |
|
498 |
4687
|
499 bool |
|
500 ComplexNDArray::any_element_is_inf_or_nan (void) const |
|
501 { |
5275
|
502 octave_idx_type nel = nelem (); |
4687
|
503 |
5275
|
504 for (octave_idx_type i = 0; i < nel; i++) |
4687
|
505 { |
|
506 Complex val = elem (i); |
|
507 if (xisinf (val) || xisnan (val)) |
|
508 return true; |
|
509 } |
|
510 return false; |
|
511 } |
|
512 |
|
513 // Return true if no elements have imaginary components. |
|
514 |
|
515 bool |
|
516 ComplexNDArray::all_elements_are_real (void) const |
|
517 { |
5275
|
518 octave_idx_type nel = nelem (); |
4687
|
519 |
5275
|
520 for (octave_idx_type i = 0; i < nel; i++) |
4687
|
521 { |
5260
|
522 double ip = std::imag (elem (i)); |
4687
|
523 |
|
524 if (ip != 0.0 || lo_ieee_signbit (ip)) |
|
525 return false; |
|
526 } |
|
527 |
|
528 return true; |
|
529 } |
|
530 |
|
531 // Return nonzero if any element of CM has a non-integer real or |
|
532 // imaginary part. Also extract the largest and smallest (real or |
|
533 // imaginary) values and return them in MAX_VAL and MIN_VAL. |
|
534 |
|
535 bool |
|
536 ComplexNDArray::all_integers (double& max_val, double& min_val) const |
|
537 { |
5275
|
538 octave_idx_type nel = nelem (); |
4687
|
539 |
|
540 if (nel > 0) |
|
541 { |
|
542 Complex val = elem (0); |
|
543 |
5260
|
544 double r_val = std::real (val); |
|
545 double i_val = std::imag (val); |
4687
|
546 |
|
547 max_val = r_val; |
|
548 min_val = r_val; |
|
549 |
|
550 if (i_val > max_val) |
|
551 max_val = i_val; |
|
552 |
|
553 if (i_val < max_val) |
|
554 min_val = i_val; |
|
555 } |
|
556 else |
|
557 return false; |
|
558 |
5275
|
559 for (octave_idx_type i = 0; i < nel; i++) |
4687
|
560 { |
|
561 Complex val = elem (i); |
|
562 |
5260
|
563 double r_val = std::real (val); |
|
564 double i_val = std::imag (val); |
4687
|
565 |
|
566 if (r_val > max_val) |
|
567 max_val = r_val; |
|
568 |
|
569 if (i_val > max_val) |
|
570 max_val = i_val; |
|
571 |
|
572 if (r_val < min_val) |
|
573 min_val = r_val; |
|
574 |
|
575 if (i_val < min_val) |
|
576 min_val = i_val; |
|
577 |
|
578 if (D_NINT (r_val) != r_val || D_NINT (i_val) != i_val) |
|
579 return false; |
|
580 } |
|
581 |
|
582 return true; |
|
583 } |
|
584 |
|
585 bool |
|
586 ComplexNDArray::too_large_for_float (void) const |
|
587 { |
5275
|
588 octave_idx_type nel = nelem (); |
4687
|
589 |
5275
|
590 for (octave_idx_type i = 0; i < nel; i++) |
4687
|
591 { |
|
592 Complex val = elem (i); |
|
593 |
5260
|
594 double r_val = std::real (val); |
|
595 double i_val = std::imag (val); |
4687
|
596 |
5387
|
597 if ((! (octave_is_NaN_or_NA (r_val) || xisinf (r_val)) |
|
598 && fabs (r_val) > FLT_MAX) |
|
599 || (! (octave_is_NaN_or_NA (i_val) || xisinf (i_val)) |
|
600 && fabs (i_val) > FLT_MAX)) |
4687
|
601 return true; |
|
602 } |
|
603 |
|
604 return false; |
|
605 } |
|
606 |
4556
|
607 boolNDArray |
4514
|
608 ComplexNDArray::all (int dim) const |
|
609 { |
4569
|
610 MX_ND_ANY_ALL_REDUCTION |
|
611 (MX_ND_ALL_EVAL (elem (iter_idx) == Complex (0, 0)), true); |
4514
|
612 } |
|
613 |
4556
|
614 boolNDArray |
4514
|
615 ComplexNDArray::any (int dim) const |
|
616 { |
4569
|
617 MX_ND_ANY_ALL_REDUCTION |
5110
|
618 (MX_ND_ANY_EVAL (elem (iter_idx) != Complex (0, 0) |
5260
|
619 && ! (lo_ieee_isnan (std::real (elem (iter_idx))) |
|
620 || lo_ieee_isnan (std::imag (elem (iter_idx))))), |
5110
|
621 false); |
4569
|
622 } |
|
623 |
4584
|
624 ComplexNDArray |
4569
|
625 ComplexNDArray::cumprod (int dim) const |
|
626 { |
4584
|
627 MX_ND_CUMULATIVE_OP (ComplexNDArray, Complex, Complex (1, 0), *); |
4569
|
628 } |
|
629 |
4584
|
630 ComplexNDArray |
4569
|
631 ComplexNDArray::cumsum (int dim) const |
|
632 { |
4584
|
633 MX_ND_CUMULATIVE_OP (ComplexNDArray, Complex, Complex (0, 0), +); |
4569
|
634 } |
|
635 |
|
636 ComplexNDArray |
|
637 ComplexNDArray::prod (int dim) const |
|
638 { |
|
639 MX_ND_COMPLEX_OP_REDUCTION (*= elem (iter_idx), Complex (1, 0)); |
|
640 } |
|
641 |
|
642 ComplexNDArray |
|
643 ComplexNDArray::sumsq (int dim) const |
|
644 { |
|
645 MX_ND_COMPLEX_OP_REDUCTION |
5260
|
646 (+= std::imag (elem (iter_idx)) |
4569
|
647 ? elem (iter_idx) * conj (elem (iter_idx)) |
|
648 : std::pow (elem (iter_idx), 2), Complex (0, 0)); |
|
649 } |
|
650 |
|
651 ComplexNDArray |
|
652 ComplexNDArray::sum (int dim) const |
|
653 { |
|
654 MX_ND_COMPLEX_OP_REDUCTION (+= elem (iter_idx), Complex (0, 0)); |
|
655 } |
|
656 |
4915
|
657 ComplexNDArray |
5275
|
658 ComplexNDArray::concat (const ComplexNDArray& rb, const Array<octave_idx_type>& ra_idx) |
4915
|
659 { |
4940
|
660 if (rb.numel () > 0) |
5073
|
661 insert (rb, ra_idx); |
|
662 return *this; |
4915
|
663 } |
|
664 |
|
665 ComplexNDArray |
5275
|
666 ComplexNDArray::concat (const NDArray& rb, const Array<octave_idx_type>& ra_idx) |
4758
|
667 { |
4915
|
668 ComplexNDArray tmp (rb); |
4940
|
669 if (rb.numel () > 0) |
5073
|
670 insert (tmp, ra_idx); |
|
671 return *this; |
4915
|
672 } |
|
673 |
|
674 ComplexNDArray |
5275
|
675 concat (NDArray& ra, ComplexNDArray& rb, const Array<octave_idx_type>& ra_idx) |
4915
|
676 { |
|
677 ComplexNDArray retval (ra); |
4940
|
678 if (rb.numel () > 0) |
4915
|
679 retval.insert (rb, ra_idx); |
|
680 return retval; |
4758
|
681 } |
|
682 |
4844
|
683 static const Complex Complex_NaN_result (octave_NaN, octave_NaN); |
|
684 |
|
685 ComplexNDArray |
|
686 ComplexNDArray::max (int dim) const |
|
687 { |
5275
|
688 ArrayN<octave_idx_type> dummy_idx; |
4844
|
689 return max (dummy_idx, dim); |
|
690 } |
|
691 |
|
692 ComplexNDArray |
5275
|
693 ComplexNDArray::max (ArrayN<octave_idx_type>& idx_arg, int dim) const |
4844
|
694 { |
|
695 dim_vector dv = dims (); |
|
696 dim_vector dr = dims (); |
|
697 |
|
698 if (dv.numel () == 0 || dim > dv.length () || dim < 0) |
|
699 return ComplexNDArray (); |
|
700 |
|
701 dr(dim) = 1; |
|
702 |
|
703 ComplexNDArray result (dr); |
|
704 idx_arg.resize (dr); |
|
705 |
5275
|
706 octave_idx_type x_stride = 1; |
|
707 octave_idx_type x_len = dv(dim); |
4844
|
708 for (int i = 0; i < dim; i++) |
|
709 x_stride *= dv(i); |
|
710 |
5275
|
711 for (octave_idx_type i = 0; i < dr.numel (); i++) |
4844
|
712 { |
5275
|
713 octave_idx_type x_offset; |
4844
|
714 if (x_stride == 1) |
|
715 x_offset = i * x_len; |
|
716 else |
|
717 { |
5275
|
718 octave_idx_type x_offset2 = 0; |
4844
|
719 x_offset = i; |
|
720 while (x_offset >= x_stride) |
|
721 { |
|
722 x_offset -= x_stride; |
|
723 x_offset2++; |
|
724 } |
|
725 x_offset += x_offset2 * x_stride * x_len; |
|
726 } |
|
727 |
5275
|
728 octave_idx_type idx_j; |
4844
|
729 |
|
730 Complex tmp_max; |
|
731 |
|
732 double abs_max = octave_NaN; |
|
733 |
|
734 for (idx_j = 0; idx_j < x_len; idx_j++) |
|
735 { |
|
736 tmp_max = elem (idx_j * x_stride + x_offset); |
|
737 |
|
738 if (! octave_is_NaN_or_NA (tmp_max)) |
|
739 { |
5260
|
740 abs_max = std::abs(tmp_max); |
4844
|
741 break; |
|
742 } |
|
743 } |
|
744 |
5275
|
745 for (octave_idx_type j = idx_j+1; j < x_len; j++) |
4844
|
746 { |
|
747 Complex tmp = elem (j * x_stride + x_offset); |
|
748 |
|
749 if (octave_is_NaN_or_NA (tmp)) |
|
750 continue; |
|
751 |
5260
|
752 double abs_tmp = std::abs (tmp); |
4844
|
753 |
|
754 if (abs_tmp > abs_max) |
|
755 { |
|
756 idx_j = j; |
|
757 tmp_max = tmp; |
|
758 abs_max = abs_tmp; |
|
759 } |
|
760 } |
|
761 |
|
762 if (octave_is_NaN_or_NA (tmp_max)) |
|
763 { |
|
764 result.elem (i) = Complex_NaN_result; |
|
765 idx_arg.elem (i) = 0; |
|
766 } |
|
767 else |
|
768 { |
|
769 result.elem (i) = tmp_max; |
|
770 idx_arg.elem (i) = idx_j; |
|
771 } |
|
772 } |
|
773 |
|
774 return result; |
|
775 } |
|
776 |
|
777 ComplexNDArray |
|
778 ComplexNDArray::min (int dim) const |
|
779 { |
5275
|
780 ArrayN<octave_idx_type> dummy_idx; |
4844
|
781 return min (dummy_idx, dim); |
|
782 } |
|
783 |
|
784 ComplexNDArray |
5275
|
785 ComplexNDArray::min (ArrayN<octave_idx_type>& idx_arg, int dim) const |
4844
|
786 { |
|
787 dim_vector dv = dims (); |
|
788 dim_vector dr = dims (); |
|
789 |
|
790 if (dv.numel () == 0 || dim > dv.length () || dim < 0) |
|
791 return ComplexNDArray (); |
|
792 |
|
793 dr(dim) = 1; |
|
794 |
|
795 ComplexNDArray result (dr); |
|
796 idx_arg.resize (dr); |
|
797 |
5275
|
798 octave_idx_type x_stride = 1; |
|
799 octave_idx_type x_len = dv(dim); |
4844
|
800 for (int i = 0; i < dim; i++) |
|
801 x_stride *= dv(i); |
|
802 |
5275
|
803 for (octave_idx_type i = 0; i < dr.numel (); i++) |
4844
|
804 { |
5275
|
805 octave_idx_type x_offset; |
4844
|
806 if (x_stride == 1) |
|
807 x_offset = i * x_len; |
|
808 else |
|
809 { |
5275
|
810 octave_idx_type x_offset2 = 0; |
4844
|
811 x_offset = i; |
|
812 while (x_offset >= x_stride) |
|
813 { |
|
814 x_offset -= x_stride; |
|
815 x_offset2++; |
|
816 } |
|
817 x_offset += x_offset2 * x_stride * x_len; |
|
818 } |
|
819 |
5275
|
820 octave_idx_type idx_j; |
4844
|
821 |
|
822 Complex tmp_min; |
|
823 |
|
824 double abs_min = octave_NaN; |
|
825 |
|
826 for (idx_j = 0; idx_j < x_len; idx_j++) |
|
827 { |
|
828 tmp_min = elem (idx_j * x_stride + x_offset); |
|
829 |
|
830 if (! octave_is_NaN_or_NA (tmp_min)) |
|
831 { |
5260
|
832 abs_min = std::abs(tmp_min); |
4844
|
833 break; |
|
834 } |
|
835 } |
|
836 |
5275
|
837 for (octave_idx_type j = idx_j+1; j < x_len; j++) |
4844
|
838 { |
|
839 Complex tmp = elem (j * x_stride + x_offset); |
|
840 |
|
841 if (octave_is_NaN_or_NA (tmp)) |
|
842 continue; |
|
843 |
5260
|
844 double abs_tmp = std::abs (tmp); |
4844
|
845 |
|
846 if (abs_tmp < abs_min) |
|
847 { |
|
848 idx_j = j; |
|
849 tmp_min = tmp; |
|
850 abs_min = abs_tmp; |
|
851 } |
|
852 } |
|
853 |
|
854 if (octave_is_NaN_or_NA (tmp_min)) |
|
855 { |
|
856 result.elem (i) = Complex_NaN_result; |
|
857 idx_arg.elem (i) = 0; |
|
858 } |
|
859 else |
|
860 { |
|
861 result.elem (i) = tmp_min; |
|
862 idx_arg.elem (i) = idx_j; |
|
863 } |
|
864 } |
|
865 |
|
866 return result; |
|
867 } |
|
868 |
4634
|
869 NDArray |
4569
|
870 ComplexNDArray::abs (void) const |
|
871 { |
4634
|
872 NDArray retval (dims ()); |
4569
|
873 |
5275
|
874 octave_idx_type nel = nelem (); |
4634
|
875 |
5275
|
876 for (octave_idx_type i = 0; i < nel; i++) |
5260
|
877 retval(i) = std::abs (elem (i)); |
4569
|
878 |
|
879 return retval; |
4514
|
880 } |
|
881 |
4765
|
882 ComplexNDArray& |
5275
|
883 ComplexNDArray::insert (const NDArray& a, octave_idx_type r, octave_idx_type c) |
4765
|
884 { |
|
885 dim_vector a_dv = a.dims (); |
|
886 |
|
887 int n = a_dv.length (); |
|
888 |
|
889 if (n == dimensions.length ()) |
|
890 { |
5275
|
891 Array<octave_idx_type> a_ra_idx (a_dv.length (), 0); |
4765
|
892 |
|
893 a_ra_idx.elem (0) = r; |
|
894 a_ra_idx.elem (1) = c; |
|
895 |
|
896 for (int i = 0; i < n; i++) |
|
897 { |
|
898 if (a_ra_idx (i) < 0 || (a_ra_idx (i) + a_dv (i)) > dimensions (i)) |
|
899 { |
|
900 (*current_liboctave_error_handler) |
|
901 ("Array<T>::insert: range error for insert"); |
|
902 return *this; |
|
903 } |
|
904 } |
|
905 |
|
906 a_ra_idx.elem (0) = 0; |
|
907 a_ra_idx.elem (1) = 0; |
|
908 |
5275
|
909 octave_idx_type n_elt = a.numel (); |
4765
|
910 |
|
911 // IS make_unique () NECCESSARY HERE?? |
|
912 |
5275
|
913 for (octave_idx_type i = 0; i < n_elt; i++) |
4765
|
914 { |
5275
|
915 Array<octave_idx_type> ra_idx = a_ra_idx; |
4765
|
916 |
|
917 ra_idx.elem (0) = a_ra_idx (0) + r; |
|
918 ra_idx.elem (1) = a_ra_idx (1) + c; |
|
919 |
|
920 elem (ra_idx) = a.elem (a_ra_idx); |
|
921 |
|
922 increment_index (a_ra_idx, a_dv); |
|
923 } |
|
924 } |
|
925 else |
|
926 (*current_liboctave_error_handler) |
|
927 ("Array<T>::insert: invalid indexing operation"); |
|
928 |
|
929 return *this; |
|
930 } |
|
931 |
|
932 ComplexNDArray& |
5275
|
933 ComplexNDArray::insert (const ComplexNDArray& a, octave_idx_type r, octave_idx_type c) |
4765
|
934 { |
|
935 Array<Complex>::insert (a, r, c); |
|
936 return *this; |
|
937 } |
|
938 |
4915
|
939 ComplexNDArray& |
5275
|
940 ComplexNDArray::insert (const ComplexNDArray& a, const Array<octave_idx_type>& ra_idx) |
4915
|
941 { |
|
942 Array<Complex>::insert (a, ra_idx); |
|
943 return *this; |
|
944 } |
|
945 |
4514
|
946 ComplexMatrix |
|
947 ComplexNDArray::matrix_value (void) const |
|
948 { |
|
949 ComplexMatrix retval; |
|
950 |
|
951 int nd = ndims (); |
|
952 |
|
953 switch (nd) |
|
954 { |
|
955 case 1: |
|
956 retval = ComplexMatrix (Array2<Complex> (*this, dimensions(0), 1)); |
|
957 break; |
|
958 |
|
959 case 2: |
|
960 retval = ComplexMatrix (Array2<Complex> (*this, dimensions(0), |
|
961 dimensions(1))); |
|
962 break; |
|
963 |
|
964 default: |
|
965 (*current_liboctave_error_handler) |
4770
|
966 ("invalid conversion of ComplexNDArray to ComplexMatrix"); |
4514
|
967 break; |
|
968 } |
|
969 |
|
970 return retval; |
|
971 } |
|
972 |
4532
|
973 void |
5275
|
974 ComplexNDArray::increment_index (Array<octave_idx_type>& ra_idx, |
4532
|
975 const dim_vector& dimensions, |
|
976 int start_dimension) |
|
977 { |
|
978 ::increment_index (ra_idx, dimensions, start_dimension); |
|
979 } |
|
980 |
5275
|
981 octave_idx_type |
|
982 ComplexNDArray::compute_index (Array<octave_idx_type>& ra_idx, |
4556
|
983 const dim_vector& dimensions) |
|
984 { |
|
985 return ::compute_index (ra_idx, dimensions); |
|
986 } |
|
987 |
4687
|
988 |
|
989 // This contains no information on the array structure !!! |
|
990 std::ostream& |
|
991 operator << (std::ostream& os, const ComplexNDArray& a) |
|
992 { |
5275
|
993 octave_idx_type nel = a.nelem (); |
4687
|
994 |
5275
|
995 for (octave_idx_type i = 0; i < nel; i++) |
4687
|
996 { |
|
997 os << " "; |
|
998 octave_write_complex (os, a.elem (i)); |
|
999 os << "\n"; |
|
1000 } |
|
1001 return os; |
|
1002 } |
|
1003 |
|
1004 std::istream& |
|
1005 operator >> (std::istream& is, ComplexNDArray& a) |
|
1006 { |
5275
|
1007 octave_idx_type nel = a.nelem (); |
4687
|
1008 |
|
1009 if (nel < 1 ) |
|
1010 is.clear (std::ios::badbit); |
|
1011 else |
|
1012 { |
|
1013 Complex tmp; |
5275
|
1014 for (octave_idx_type i = 0; i < nel; i++) |
4687
|
1015 { |
|
1016 tmp = octave_read_complex (is); |
|
1017 if (is) |
|
1018 a.elem (i) = tmp; |
|
1019 else |
|
1020 goto done; |
|
1021 } |
|
1022 } |
|
1023 |
|
1024 done: |
|
1025 |
|
1026 return is; |
|
1027 } |
|
1028 |
4844
|
1029 // XXX FIXME XXX -- it would be nice to share code among the min/max |
|
1030 // functions below. |
|
1031 |
|
1032 #define EMPTY_RETURN_CHECK(T) \ |
|
1033 if (nel == 0) \ |
|
1034 return T (dv); |
|
1035 |
|
1036 ComplexNDArray |
|
1037 min (const Complex& c, const ComplexNDArray& m) |
|
1038 { |
|
1039 dim_vector dv = m.dims (); |
|
1040 int nel = dv.numel (); |
|
1041 |
|
1042 EMPTY_RETURN_CHECK (ComplexNDArray); |
|
1043 |
|
1044 ComplexNDArray result (dv); |
|
1045 |
|
1046 for (int i = 0; i < nel; i++) |
|
1047 { |
|
1048 OCTAVE_QUIT; |
|
1049 result (i) = xmin (c, m (i)); |
|
1050 } |
|
1051 |
|
1052 return result; |
|
1053 } |
|
1054 |
|
1055 ComplexNDArray |
|
1056 min (const ComplexNDArray& m, const Complex& c) |
|
1057 { |
|
1058 dim_vector dv = m.dims (); |
|
1059 int nel = dv.numel (); |
|
1060 |
|
1061 EMPTY_RETURN_CHECK (ComplexNDArray); |
|
1062 |
|
1063 ComplexNDArray result (dv); |
|
1064 |
|
1065 for (int i = 0; i < nel; i++) |
|
1066 { |
|
1067 OCTAVE_QUIT; |
|
1068 result (i) = xmin (c, m (i)); |
|
1069 } |
|
1070 |
|
1071 return result; |
|
1072 } |
|
1073 |
|
1074 ComplexNDArray |
|
1075 min (const ComplexNDArray& a, const ComplexNDArray& b) |
|
1076 { |
|
1077 dim_vector dv = a.dims (); |
|
1078 int nel = dv.numel (); |
|
1079 |
|
1080 if (dv != b.dims ()) |
|
1081 { |
|
1082 (*current_liboctave_error_handler) |
|
1083 ("two-arg min expecting args of same size"); |
|
1084 return ComplexNDArray (); |
|
1085 } |
|
1086 |
|
1087 EMPTY_RETURN_CHECK (ComplexNDArray); |
|
1088 |
|
1089 ComplexNDArray result (dv); |
|
1090 |
|
1091 for (int i = 0; i < nel; i++) |
|
1092 { |
|
1093 OCTAVE_QUIT; |
|
1094 result (i) = xmin (a (i), b (i)); |
|
1095 } |
|
1096 |
|
1097 return result; |
|
1098 } |
|
1099 |
|
1100 ComplexNDArray |
|
1101 max (const Complex& c, const ComplexNDArray& m) |
|
1102 { |
|
1103 dim_vector dv = m.dims (); |
|
1104 int nel = dv.numel (); |
|
1105 |
|
1106 EMPTY_RETURN_CHECK (ComplexNDArray); |
|
1107 |
|
1108 ComplexNDArray result (dv); |
|
1109 |
|
1110 for (int i = 0; i < nel; i++) |
|
1111 { |
|
1112 OCTAVE_QUIT; |
|
1113 result (i) = xmax (c, m (i)); |
|
1114 } |
|
1115 |
|
1116 return result; |
|
1117 } |
|
1118 |
|
1119 ComplexNDArray |
|
1120 max (const ComplexNDArray& m, const Complex& c) |
|
1121 { |
|
1122 dim_vector dv = m.dims (); |
|
1123 int nel = dv.numel (); |
|
1124 |
|
1125 EMPTY_RETURN_CHECK (ComplexNDArray); |
|
1126 |
|
1127 ComplexNDArray result (dv); |
|
1128 |
|
1129 for (int i = 0; i < nel; i++) |
|
1130 { |
|
1131 OCTAVE_QUIT; |
|
1132 result (i) = xmax (c, m (i)); |
|
1133 } |
|
1134 |
|
1135 return result; |
|
1136 } |
|
1137 |
|
1138 ComplexNDArray |
|
1139 max (const ComplexNDArray& a, const ComplexNDArray& b) |
|
1140 { |
|
1141 dim_vector dv = a.dims (); |
|
1142 int nel = dv.numel (); |
|
1143 |
|
1144 if (dv != b.dims ()) |
|
1145 { |
|
1146 (*current_liboctave_error_handler) |
|
1147 ("two-arg max expecting args of same size"); |
|
1148 return ComplexNDArray (); |
|
1149 } |
|
1150 |
|
1151 EMPTY_RETURN_CHECK (ComplexNDArray); |
|
1152 |
|
1153 ComplexNDArray result (dv); |
|
1154 |
|
1155 for (int i = 0; i < nel; i++) |
|
1156 { |
|
1157 OCTAVE_QUIT; |
|
1158 result (i) = xmax (a (i), b (i)); |
|
1159 } |
|
1160 |
|
1161 return result; |
|
1162 } |
|
1163 |
5260
|
1164 NDS_CMP_OPS(ComplexNDArray, std::real, Complex, std::real) |
4543
|
1165 NDS_BOOL_OPS(ComplexNDArray, Complex, 0.0) |
|
1166 |
5260
|
1167 SND_CMP_OPS(Complex, std::real, ComplexNDArray, std::real) |
4543
|
1168 SND_BOOL_OPS(Complex, ComplexNDArray, 0.0) |
|
1169 |
5260
|
1170 NDND_CMP_OPS(ComplexNDArray, std::real, ComplexNDArray, std::real) |
4543
|
1171 NDND_BOOL_OPS(ComplexNDArray, ComplexNDArray, 0.0) |
|
1172 |
4514
|
1173 /* |
|
1174 ;;; Local Variables: *** |
|
1175 ;;; mode: C++ *** |
|
1176 ;;; End: *** |
|
1177 */ |