4513
|
1 // N-D Array manipulations. |
4511
|
2 /* |
|
3 |
|
4 Copyright (C) 1996, 1997 John W. Eaton |
|
5 |
|
6 This file is part of Octave. |
|
7 |
|
8 Octave is free software; you can redistribute it and/or modify it |
|
9 under the terms of the GNU General Public License as published by the |
|
10 Free Software Foundation; either version 2, or (at your option) any |
|
11 later version. |
|
12 |
|
13 Octave is distributed in the hope that it will be useful, but WITHOUT |
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
16 for more details. |
|
17 |
|
18 You should have received a copy of the GNU General Public License |
|
19 along with Octave; see the file COPYING. If not, write to the Free |
5307
|
20 Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
|
21 02110-1301, USA. |
4511
|
22 |
|
23 */ |
|
24 |
|
25 #ifdef HAVE_CONFIG_H |
|
26 #include <config.h> |
|
27 #endif |
|
28 |
4634
|
29 #include <cfloat> |
5164
|
30 |
4780
|
31 #include <vector> |
4634
|
32 |
4588
|
33 #include "Array-util.h" |
4513
|
34 #include "dNDArray.h" |
4511
|
35 #include "mx-base.h" |
4773
|
36 #include "f77-fcn.h" |
4513
|
37 #include "lo-error.h" |
4511
|
38 #include "lo-ieee.h" |
4634
|
39 #include "lo-mappers.h" |
4511
|
40 |
4773
|
41 #if defined (HAVE_FFTW3) |
|
42 #include "oct-fftw.h" |
|
43 |
|
44 ComplexNDArray |
|
45 NDArray::fourier (int dim) const |
|
46 { |
|
47 dim_vector dv = dims (); |
|
48 |
|
49 if (dim > dv.length () || dim < 0) |
|
50 return ComplexNDArray (); |
|
51 |
5275
|
52 octave_idx_type stride = 1; |
|
53 octave_idx_type n = dv(dim); |
4773
|
54 |
|
55 for (int i = 0; i < dim; i++) |
|
56 stride *= dv(i); |
|
57 |
5275
|
58 octave_idx_type howmany = numel () / dv (dim); |
4773
|
59 howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); |
5275
|
60 octave_idx_type nloop = (stride == 1 ? 1 : numel () / dv (dim) / stride); |
|
61 octave_idx_type dist = (stride == 1 ? n : 1); |
4773
|
62 |
|
63 const double *in (fortran_vec ()); |
|
64 ComplexNDArray retval (dv); |
|
65 Complex *out (retval.fortran_vec ()); |
|
66 |
|
67 // Need to be careful here about the distance between fft's |
5275
|
68 for (octave_idx_type k = 0; k < nloop; k++) |
4773
|
69 octave_fftw::fft (in + k * stride * n, out + k * stride * n, |
|
70 n, howmany, stride, dist); |
|
71 |
|
72 return retval; |
|
73 } |
|
74 |
|
75 ComplexNDArray |
4816
|
76 NDArray::ifourier (int dim) const |
4773
|
77 { |
|
78 dim_vector dv = dims (); |
|
79 |
|
80 if (dim > dv.length () || dim < 0) |
|
81 return ComplexNDArray (); |
|
82 |
5275
|
83 octave_idx_type stride = 1; |
|
84 octave_idx_type n = dv(dim); |
4773
|
85 |
|
86 for (int i = 0; i < dim; i++) |
|
87 stride *= dv(i); |
|
88 |
5275
|
89 octave_idx_type howmany = numel () / dv (dim); |
4773
|
90 howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); |
5275
|
91 octave_idx_type nloop = (stride == 1 ? 1 : numel () / dv (dim) / stride); |
|
92 octave_idx_type dist = (stride == 1 ? n : 1); |
4773
|
93 |
|
94 ComplexNDArray retval (*this); |
|
95 Complex *out (retval.fortran_vec ()); |
|
96 |
|
97 // Need to be careful here about the distance between fft's |
5275
|
98 for (octave_idx_type k = 0; k < nloop; k++) |
4773
|
99 octave_fftw::ifft (out + k * stride * n, out + k * stride * n, |
|
100 n, howmany, stride, dist); |
|
101 |
|
102 return retval; |
|
103 } |
|
104 |
|
105 ComplexNDArray |
|
106 NDArray::fourier2d (void) const |
|
107 { |
|
108 dim_vector dv = dims(); |
|
109 if (dv.length () < 2) |
|
110 return ComplexNDArray (); |
|
111 |
|
112 dim_vector dv2(dv(0), dv(1)); |
|
113 const double *in = fortran_vec (); |
|
114 ComplexNDArray retval (dv); |
|
115 Complex *out = retval.fortran_vec (); |
5275
|
116 octave_idx_type howmany = numel() / dv(0) / dv(1); |
|
117 octave_idx_type dist = dv(0) * dv(1); |
4773
|
118 |
5275
|
119 for (octave_idx_type i=0; i < howmany; i++) |
4773
|
120 octave_fftw::fftNd (in + i*dist, out + i*dist, 2, dv2); |
|
121 |
|
122 return retval; |
|
123 } |
|
124 |
|
125 ComplexNDArray |
|
126 NDArray::ifourier2d (void) const |
|
127 { |
|
128 dim_vector dv = dims(); |
|
129 if (dv.length () < 2) |
|
130 return ComplexNDArray (); |
|
131 |
|
132 dim_vector dv2(dv(0), dv(1)); |
|
133 ComplexNDArray retval (*this); |
|
134 Complex *out = retval.fortran_vec (); |
5275
|
135 octave_idx_type howmany = numel() / dv(0) / dv(1); |
|
136 octave_idx_type dist = dv(0) * dv(1); |
4773
|
137 |
5275
|
138 for (octave_idx_type i=0; i < howmany; i++) |
4773
|
139 octave_fftw::ifftNd (out + i*dist, out + i*dist, 2, dv2); |
|
140 |
|
141 return retval; |
|
142 } |
|
143 |
|
144 ComplexNDArray |
|
145 NDArray::fourierNd (void) const |
|
146 { |
|
147 dim_vector dv = dims (); |
|
148 int rank = dv.length (); |
|
149 |
|
150 const double *in (fortran_vec ()); |
|
151 ComplexNDArray retval (dv); |
|
152 Complex *out (retval.fortran_vec ()); |
|
153 |
|
154 octave_fftw::fftNd (in, out, rank, dv); |
|
155 |
|
156 return retval; |
|
157 } |
|
158 |
|
159 ComplexNDArray |
|
160 NDArray::ifourierNd (void) const |
|
161 { |
|
162 dim_vector dv = dims (); |
|
163 int rank = dv.length (); |
|
164 |
|
165 ComplexNDArray tmp (*this); |
|
166 Complex *in (tmp.fortran_vec ()); |
|
167 ComplexNDArray retval (dv); |
|
168 Complex *out (retval.fortran_vec ()); |
|
169 |
|
170 octave_fftw::ifftNd (in, out, rank, dv); |
|
171 |
|
172 return retval; |
|
173 } |
|
174 |
|
175 #else |
|
176 |
|
177 extern "C" |
|
178 { |
|
179 // Note that the original complex fft routines were not written for |
|
180 // double complex arguments. They have been modified by adding an |
|
181 // implicit double precision (a-h,o-z) statement at the beginning of |
|
182 // each subroutine. |
|
183 |
|
184 F77_RET_T |
5275
|
185 F77_FUNC (cffti, CFFTI) (const octave_idx_type&, Complex*); |
4773
|
186 |
|
187 F77_RET_T |
5275
|
188 F77_FUNC (cfftf, CFFTF) (const octave_idx_type&, Complex*, Complex*); |
4773
|
189 |
|
190 F77_RET_T |
5275
|
191 F77_FUNC (cfftb, CFFTB) (const octave_idx_type&, Complex*, Complex*); |
4773
|
192 } |
|
193 |
|
194 ComplexNDArray |
|
195 NDArray::fourier (int dim) const |
|
196 { |
|
197 dim_vector dv = dims (); |
|
198 |
|
199 if (dim > dv.length () || dim < 0) |
|
200 return ComplexNDArray (); |
|
201 |
|
202 ComplexNDArray retval (dv); |
5275
|
203 octave_idx_type npts = dv(dim); |
|
204 octave_idx_type nn = 4*npts+15; |
4773
|
205 Array<Complex> wsave (nn); |
|
206 Complex *pwsave = wsave.fortran_vec (); |
|
207 |
|
208 OCTAVE_LOCAL_BUFFER (Complex, tmp, npts); |
|
209 |
5275
|
210 octave_idx_type stride = 1; |
4773
|
211 |
|
212 for (int i = 0; i < dim; i++) |
|
213 stride *= dv(i); |
|
214 |
5275
|
215 octave_idx_type howmany = numel () / npts; |
4773
|
216 howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); |
5275
|
217 octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
218 octave_idx_type dist = (stride == 1 ? npts : 1); |
4773
|
219 |
|
220 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
221 |
5275
|
222 for (octave_idx_type k = 0; k < nloop; k++) |
4773
|
223 { |
5275
|
224 for (octave_idx_type j = 0; j < howmany; j++) |
4773
|
225 { |
|
226 OCTAVE_QUIT; |
|
227 |
5275
|
228 for (octave_idx_type i = 0; i < npts; i++) |
4773
|
229 tmp[i] = elem((i + k*npts)*stride + j*dist); |
|
230 |
|
231 F77_FUNC (cfftf, CFFTF) (npts, tmp, pwsave); |
|
232 |
5275
|
233 for (octave_idx_type i = 0; i < npts; i++) |
4773
|
234 retval ((i + k*npts)*stride + j*dist) = tmp[i]; |
|
235 } |
|
236 } |
|
237 |
|
238 return retval; |
|
239 } |
|
240 |
|
241 ComplexNDArray |
|
242 NDArray::ifourier (int dim) const |
|
243 { |
|
244 dim_vector dv = dims (); |
|
245 |
|
246 if (dim > dv.length () || dim < 0) |
|
247 return ComplexNDArray (); |
|
248 |
|
249 ComplexNDArray retval (dv); |
5275
|
250 octave_idx_type npts = dv(dim); |
|
251 octave_idx_type nn = 4*npts+15; |
4773
|
252 Array<Complex> wsave (nn); |
|
253 Complex *pwsave = wsave.fortran_vec (); |
|
254 |
|
255 OCTAVE_LOCAL_BUFFER (Complex, tmp, npts); |
|
256 |
5275
|
257 octave_idx_type stride = 1; |
4773
|
258 |
|
259 for (int i = 0; i < dim; i++) |
|
260 stride *= dv(i); |
|
261 |
5275
|
262 octave_idx_type howmany = numel () / npts; |
4773
|
263 howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); |
5275
|
264 octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
265 octave_idx_type dist = (stride == 1 ? npts : 1); |
4773
|
266 |
|
267 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
268 |
5275
|
269 for (octave_idx_type k = 0; k < nloop; k++) |
4773
|
270 { |
5275
|
271 for (octave_idx_type j = 0; j < howmany; j++) |
4773
|
272 { |
|
273 OCTAVE_QUIT; |
|
274 |
5275
|
275 for (octave_idx_type i = 0; i < npts; i++) |
4773
|
276 tmp[i] = elem((i + k*npts)*stride + j*dist); |
|
277 |
|
278 F77_FUNC (cfftb, CFFTB) (npts, tmp, pwsave); |
|
279 |
5275
|
280 for (octave_idx_type i = 0; i < npts; i++) |
4773
|
281 retval ((i + k*npts)*stride + j*dist) = tmp[i] / |
|
282 static_cast<double> (npts); |
|
283 } |
|
284 } |
|
285 |
|
286 return retval; |
|
287 } |
|
288 |
|
289 ComplexNDArray |
|
290 NDArray::fourier2d (void) const |
|
291 { |
|
292 dim_vector dv = dims(); |
|
293 dim_vector dv2 (dv(0), dv(1)); |
|
294 int rank = 2; |
|
295 ComplexNDArray retval (*this); |
5275
|
296 octave_idx_type stride = 1; |
4773
|
297 |
|
298 for (int i = 0; i < rank; i++) |
|
299 { |
5275
|
300 octave_idx_type npts = dv2(i); |
|
301 octave_idx_type nn = 4*npts+15; |
4773
|
302 Array<Complex> wsave (nn); |
|
303 Complex *pwsave = wsave.fortran_vec (); |
|
304 Array<Complex> row (npts); |
|
305 Complex *prow = row.fortran_vec (); |
|
306 |
5275
|
307 octave_idx_type howmany = numel () / npts; |
4773
|
308 howmany = (stride == 1 ? howmany : |
|
309 (howmany > stride ? stride : howmany)); |
5275
|
310 octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
311 octave_idx_type dist = (stride == 1 ? npts : 1); |
4773
|
312 |
|
313 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
314 |
5275
|
315 for (octave_idx_type k = 0; k < nloop; k++) |
4773
|
316 { |
5275
|
317 for (octave_idx_type j = 0; j < howmany; j++) |
4773
|
318 { |
|
319 OCTAVE_QUIT; |
|
320 |
5275
|
321 for (octave_idx_type l = 0; l < npts; l++) |
4773
|
322 prow[l] = retval ((l + k*npts)*stride + j*dist); |
|
323 |
|
324 F77_FUNC (cfftf, CFFTF) (npts, prow, pwsave); |
|
325 |
5275
|
326 for (octave_idx_type l = 0; l < npts; l++) |
4773
|
327 retval ((l + k*npts)*stride + j*dist) = prow[l]; |
|
328 } |
|
329 } |
|
330 |
|
331 stride *= dv2(i); |
|
332 } |
|
333 |
|
334 return retval; |
|
335 } |
|
336 |
|
337 ComplexNDArray |
|
338 NDArray::ifourier2d (void) const |
|
339 { |
|
340 dim_vector dv = dims(); |
|
341 dim_vector dv2 (dv(0), dv(1)); |
|
342 int rank = 2; |
|
343 ComplexNDArray retval (*this); |
5275
|
344 octave_idx_type stride = 1; |
4773
|
345 |
|
346 for (int i = 0; i < rank; i++) |
|
347 { |
5275
|
348 octave_idx_type npts = dv2(i); |
|
349 octave_idx_type nn = 4*npts+15; |
4773
|
350 Array<Complex> wsave (nn); |
|
351 Complex *pwsave = wsave.fortran_vec (); |
|
352 Array<Complex> row (npts); |
|
353 Complex *prow = row.fortran_vec (); |
|
354 |
5275
|
355 octave_idx_type howmany = numel () / npts; |
4773
|
356 howmany = (stride == 1 ? howmany : |
|
357 (howmany > stride ? stride : howmany)); |
5275
|
358 octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
359 octave_idx_type dist = (stride == 1 ? npts : 1); |
4773
|
360 |
|
361 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
362 |
5275
|
363 for (octave_idx_type k = 0; k < nloop; k++) |
4773
|
364 { |
5275
|
365 for (octave_idx_type j = 0; j < howmany; j++) |
4773
|
366 { |
|
367 OCTAVE_QUIT; |
|
368 |
5275
|
369 for (octave_idx_type l = 0; l < npts; l++) |
4773
|
370 prow[l] = retval ((l + k*npts)*stride + j*dist); |
|
371 |
|
372 F77_FUNC (cfftb, CFFTB) (npts, prow, pwsave); |
|
373 |
5275
|
374 for (octave_idx_type l = 0; l < npts; l++) |
4773
|
375 retval ((l + k*npts)*stride + j*dist) = prow[l] / |
|
376 static_cast<double> (npts); |
|
377 } |
|
378 } |
|
379 |
|
380 stride *= dv2(i); |
|
381 } |
|
382 |
|
383 return retval; |
|
384 } |
|
385 |
|
386 ComplexNDArray |
|
387 NDArray::fourierNd (void) const |
|
388 { |
|
389 dim_vector dv = dims (); |
|
390 int rank = dv.length (); |
|
391 ComplexNDArray retval (*this); |
5275
|
392 octave_idx_type stride = 1; |
4773
|
393 |
|
394 for (int i = 0; i < rank; i++) |
|
395 { |
5275
|
396 octave_idx_type npts = dv(i); |
|
397 octave_idx_type nn = 4*npts+15; |
4773
|
398 Array<Complex> wsave (nn); |
|
399 Complex *pwsave = wsave.fortran_vec (); |
|
400 Array<Complex> row (npts); |
|
401 Complex *prow = row.fortran_vec (); |
|
402 |
5275
|
403 octave_idx_type howmany = numel () / npts; |
4773
|
404 howmany = (stride == 1 ? howmany : |
|
405 (howmany > stride ? stride : howmany)); |
5275
|
406 octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
407 octave_idx_type dist = (stride == 1 ? npts : 1); |
4773
|
408 |
|
409 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
410 |
5275
|
411 for (octave_idx_type k = 0; k < nloop; k++) |
4773
|
412 { |
5275
|
413 for (octave_idx_type j = 0; j < howmany; j++) |
4773
|
414 { |
|
415 OCTAVE_QUIT; |
|
416 |
5275
|
417 for (octave_idx_type l = 0; l < npts; l++) |
4773
|
418 prow[l] = retval ((l + k*npts)*stride + j*dist); |
|
419 |
|
420 F77_FUNC (cfftf, CFFTF) (npts, prow, pwsave); |
|
421 |
5275
|
422 for (octave_idx_type l = 0; l < npts; l++) |
4773
|
423 retval ((l + k*npts)*stride + j*dist) = prow[l]; |
|
424 } |
|
425 } |
|
426 |
|
427 stride *= dv(i); |
|
428 } |
|
429 |
|
430 return retval; |
|
431 } |
|
432 |
|
433 ComplexNDArray |
|
434 NDArray::ifourierNd (void) const |
|
435 { |
|
436 dim_vector dv = dims (); |
|
437 int rank = dv.length (); |
|
438 ComplexNDArray retval (*this); |
5275
|
439 octave_idx_type stride = 1; |
4773
|
440 |
|
441 for (int i = 0; i < rank; i++) |
|
442 { |
5275
|
443 octave_idx_type npts = dv(i); |
|
444 octave_idx_type nn = 4*npts+15; |
4773
|
445 Array<Complex> wsave (nn); |
|
446 Complex *pwsave = wsave.fortran_vec (); |
|
447 Array<Complex> row (npts); |
|
448 Complex *prow = row.fortran_vec (); |
|
449 |
5275
|
450 octave_idx_type howmany = numel () / npts; |
4773
|
451 howmany = (stride == 1 ? howmany : |
|
452 (howmany > stride ? stride : howmany)); |
5275
|
453 octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
454 octave_idx_type dist = (stride == 1 ? npts : 1); |
4773
|
455 |
|
456 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
457 |
5275
|
458 for (octave_idx_type k = 0; k < nloop; k++) |
4773
|
459 { |
5275
|
460 for (octave_idx_type j = 0; j < howmany; j++) |
4773
|
461 { |
|
462 OCTAVE_QUIT; |
|
463 |
5275
|
464 for (octave_idx_type l = 0; l < npts; l++) |
4773
|
465 prow[l] = retval ((l + k*npts)*stride + j*dist); |
|
466 |
|
467 F77_FUNC (cfftb, CFFTB) (npts, prow, pwsave); |
|
468 |
5275
|
469 for (octave_idx_type l = 0; l < npts; l++) |
4773
|
470 retval ((l + k*npts)*stride + j*dist) = prow[l] / |
|
471 static_cast<double> (npts); |
|
472 } |
|
473 } |
|
474 |
|
475 stride *= dv(i); |
|
476 } |
|
477 |
|
478 return retval; |
|
479 } |
|
480 |
|
481 #endif |
|
482 |
4543
|
483 // unary operations |
|
484 |
|
485 boolNDArray |
|
486 NDArray::operator ! (void) const |
|
487 { |
|
488 boolNDArray b (dims ()); |
|
489 |
5275
|
490 for (octave_idx_type i = 0; i < length (); i++) |
4543
|
491 b.elem (i) = ! elem (i); |
|
492 |
|
493 return b; |
|
494 } |
|
495 |
4634
|
496 bool |
|
497 NDArray::any_element_is_negative (bool neg_zero) const |
|
498 { |
5275
|
499 octave_idx_type nel = nelem (); |
4634
|
500 |
|
501 if (neg_zero) |
|
502 { |
5275
|
503 for (octave_idx_type i = 0; i < nel; i++) |
4634
|
504 if (lo_ieee_signbit (elem (i))) |
|
505 return true; |
|
506 } |
|
507 else |
|
508 { |
5275
|
509 for (octave_idx_type i = 0; i < nel; i++) |
4634
|
510 if (elem (i) < 0) |
|
511 return true; |
|
512 } |
|
513 |
|
514 return false; |
|
515 } |
|
516 |
|
517 |
|
518 bool |
|
519 NDArray::any_element_is_inf_or_nan (void) const |
|
520 { |
5275
|
521 octave_idx_type nel = nelem (); |
4634
|
522 |
5275
|
523 for (octave_idx_type i = 0; i < nel; i++) |
4634
|
524 { |
|
525 double val = elem (i); |
|
526 if (xisinf (val) || xisnan (val)) |
|
527 return true; |
|
528 } |
|
529 |
|
530 return false; |
|
531 } |
|
532 |
|
533 bool |
|
534 NDArray::all_elements_are_int_or_inf_or_nan (void) const |
|
535 { |
5275
|
536 octave_idx_type nel = nelem (); |
4634
|
537 |
5275
|
538 for (octave_idx_type i = 0; i < nel; i++) |
4634
|
539 { |
|
540 double val = elem (i); |
|
541 if (xisnan (val) || D_NINT (val) == val) |
|
542 continue; |
|
543 else |
|
544 return false; |
|
545 } |
|
546 |
|
547 return true; |
|
548 } |
|
549 |
|
550 // Return nonzero if any element of M is not an integer. Also extract |
|
551 // the largest and smallest values and return them in MAX_VAL and MIN_VAL. |
|
552 |
|
553 bool |
|
554 NDArray::all_integers (double& max_val, double& min_val) const |
|
555 { |
5275
|
556 octave_idx_type nel = nelem (); |
4634
|
557 |
|
558 if (nel > 0) |
|
559 { |
|
560 max_val = elem (0); |
|
561 min_val = elem (0); |
|
562 } |
|
563 else |
|
564 return false; |
|
565 |
5275
|
566 for (octave_idx_type i = 0; i < nel; i++) |
4634
|
567 { |
|
568 double val = elem (i); |
|
569 |
|
570 if (val > max_val) |
|
571 max_val = val; |
|
572 |
|
573 if (val < min_val) |
|
574 min_val = val; |
|
575 |
|
576 if (D_NINT (val) != val) |
|
577 return false; |
|
578 } |
|
579 |
|
580 return true; |
|
581 } |
|
582 |
|
583 bool |
|
584 NDArray::too_large_for_float (void) const |
|
585 { |
5275
|
586 octave_idx_type nel = nelem (); |
4634
|
587 |
5275
|
588 for (octave_idx_type i = 0; i < nel; i++) |
4634
|
589 { |
|
590 double val = elem (i); |
|
591 |
|
592 if (val > FLT_MAX || val < FLT_MIN) |
|
593 return true; |
|
594 } |
|
595 |
|
596 return false; |
|
597 } |
|
598 |
4513
|
599 // XXX FIXME XXX -- this is not quite the right thing. |
|
600 |
4556
|
601 boolNDArray |
4513
|
602 NDArray::all (int dim) const |
|
603 { |
4569
|
604 MX_ND_ANY_ALL_REDUCTION (MX_ND_ALL_EVAL (MX_ND_ALL_EXPR), true); |
4513
|
605 } |
|
606 |
4556
|
607 boolNDArray |
4513
|
608 NDArray::any (int dim) const |
|
609 { |
5110
|
610 MX_ND_ANY_ALL_REDUCTION |
|
611 (MX_ND_ANY_EVAL (elem (iter_idx) != 0 |
|
612 && ! lo_ieee_isnan (elem (iter_idx))), false); |
4569
|
613 } |
|
614 |
4584
|
615 NDArray |
4569
|
616 NDArray::cumprod (int dim) const |
|
617 { |
4584
|
618 MX_ND_CUMULATIVE_OP (NDArray, double, 1, *); |
4569
|
619 } |
|
620 |
4584
|
621 NDArray |
4569
|
622 NDArray::cumsum (int dim) const |
|
623 { |
4584
|
624 MX_ND_CUMULATIVE_OP (NDArray, double, 0, +); |
4513
|
625 } |
|
626 |
4569
|
627 NDArray |
|
628 NDArray::prod (int dim) const |
|
629 { |
|
630 MX_ND_REAL_OP_REDUCTION (*= elem (iter_idx), 1); |
|
631 } |
|
632 |
|
633 NDArray |
|
634 NDArray::sumsq (int dim) const |
|
635 { |
|
636 MX_ND_REAL_OP_REDUCTION (+= std::pow (elem (iter_idx), 2), 0); |
|
637 } |
|
638 |
|
639 NDArray |
|
640 NDArray::sum (int dim) const |
|
641 { |
|
642 MX_ND_REAL_OP_REDUCTION (+= elem (iter_idx), 0); |
|
643 } |
|
644 |
4844
|
645 NDArray |
|
646 NDArray::max (int dim) const |
|
647 { |
5275
|
648 ArrayN<octave_idx_type> dummy_idx; |
4844
|
649 return max (dummy_idx, dim); |
|
650 } |
|
651 |
|
652 NDArray |
5275
|
653 NDArray::max (ArrayN<octave_idx_type>& idx_arg, int dim) const |
4844
|
654 { |
|
655 dim_vector dv = dims (); |
|
656 dim_vector dr = dims (); |
|
657 |
|
658 if (dv.numel () == 0 || dim > dv.length () || dim < 0) |
|
659 return NDArray (); |
|
660 |
|
661 dr(dim) = 1; |
|
662 |
|
663 NDArray result (dr); |
|
664 idx_arg.resize (dr); |
|
665 |
5275
|
666 octave_idx_type x_stride = 1; |
|
667 octave_idx_type x_len = dv(dim); |
4844
|
668 for (int i = 0; i < dim; i++) |
|
669 x_stride *= dv(i); |
|
670 |
5275
|
671 for (octave_idx_type i = 0; i < dr.numel (); i++) |
4844
|
672 { |
5275
|
673 octave_idx_type x_offset; |
4844
|
674 if (x_stride == 1) |
|
675 x_offset = i * x_len; |
|
676 else |
|
677 { |
5275
|
678 octave_idx_type x_offset2 = 0; |
4844
|
679 x_offset = i; |
|
680 while (x_offset >= x_stride) |
|
681 { |
|
682 x_offset -= x_stride; |
|
683 x_offset2++; |
|
684 } |
|
685 x_offset += x_offset2 * x_stride * x_len; |
|
686 } |
|
687 |
5275
|
688 octave_idx_type idx_j; |
4844
|
689 |
|
690 double tmp_max = octave_NaN; |
|
691 |
|
692 for (idx_j = 0; idx_j < x_len; idx_j++) |
|
693 { |
|
694 tmp_max = elem (idx_j * x_stride + x_offset); |
|
695 |
|
696 if (! octave_is_NaN_or_NA (tmp_max)) |
|
697 break; |
|
698 } |
|
699 |
5275
|
700 for (octave_idx_type j = idx_j+1; j < x_len; j++) |
4844
|
701 { |
|
702 double tmp = elem (j * x_stride + x_offset); |
|
703 |
|
704 if (octave_is_NaN_or_NA (tmp)) |
|
705 continue; |
|
706 else if (tmp > tmp_max) |
|
707 { |
|
708 idx_j = j; |
|
709 tmp_max = tmp; |
|
710 } |
|
711 } |
|
712 |
|
713 result.elem (i) = tmp_max; |
|
714 idx_arg.elem (i) = octave_is_NaN_or_NA (tmp_max) ? 0 : idx_j; |
|
715 } |
|
716 |
|
717 return result; |
|
718 } |
|
719 |
|
720 NDArray |
|
721 NDArray::min (int dim) const |
|
722 { |
5275
|
723 ArrayN<octave_idx_type> dummy_idx; |
4844
|
724 return min (dummy_idx, dim); |
|
725 } |
|
726 |
|
727 NDArray |
5275
|
728 NDArray::min (ArrayN<octave_idx_type>& idx_arg, int dim) const |
4844
|
729 { |
|
730 dim_vector dv = dims (); |
|
731 dim_vector dr = dims (); |
|
732 |
|
733 if (dv.numel () == 0 || dim > dv.length () || dim < 0) |
|
734 return NDArray (); |
|
735 |
|
736 dr(dim) = 1; |
|
737 |
|
738 NDArray result (dr); |
|
739 idx_arg.resize (dr); |
|
740 |
5275
|
741 octave_idx_type x_stride = 1; |
|
742 octave_idx_type x_len = dv(dim); |
4844
|
743 for (int i = 0; i < dim; i++) |
|
744 x_stride *= dv(i); |
|
745 |
5275
|
746 for (octave_idx_type i = 0; i < dr.numel (); i++) |
4844
|
747 { |
5275
|
748 octave_idx_type x_offset; |
4844
|
749 if (x_stride == 1) |
|
750 x_offset = i * x_len; |
|
751 else |
|
752 { |
5275
|
753 octave_idx_type x_offset2 = 0; |
4844
|
754 x_offset = i; |
|
755 while (x_offset >= x_stride) |
|
756 { |
|
757 x_offset -= x_stride; |
|
758 x_offset2++; |
|
759 } |
|
760 x_offset += x_offset2 * x_stride * x_len; |
|
761 } |
|
762 |
5275
|
763 octave_idx_type idx_j; |
4844
|
764 |
|
765 double tmp_min = octave_NaN; |
|
766 |
|
767 for (idx_j = 0; idx_j < x_len; idx_j++) |
|
768 { |
|
769 tmp_min = elem (idx_j * x_stride + x_offset); |
|
770 |
|
771 if (! octave_is_NaN_or_NA (tmp_min)) |
|
772 break; |
|
773 } |
|
774 |
5275
|
775 for (octave_idx_type j = idx_j+1; j < x_len; j++) |
4844
|
776 { |
|
777 double tmp = elem (j * x_stride + x_offset); |
|
778 |
|
779 if (octave_is_NaN_or_NA (tmp)) |
|
780 continue; |
|
781 else if (tmp < tmp_min) |
|
782 { |
|
783 idx_j = j; |
|
784 tmp_min = tmp; |
|
785 } |
|
786 } |
|
787 |
|
788 result.elem (i) = tmp_min; |
|
789 idx_arg.elem (i) = octave_is_NaN_or_NA (tmp_min) ? 0 : idx_j; |
|
790 } |
|
791 |
|
792 return result; |
|
793 } |
|
794 |
4915
|
795 NDArray |
5275
|
796 NDArray::concat (const NDArray& rb, const Array<octave_idx_type>& ra_idx) |
4758
|
797 { |
5073
|
798 if (rb.numel () > 0) |
|
799 insert (rb, ra_idx); |
|
800 return *this; |
|
801 } |
|
802 |
|
803 ComplexNDArray |
5275
|
804 NDArray::concat (const ComplexNDArray& rb, const Array<octave_idx_type>& ra_idx) |
5073
|
805 { |
|
806 ComplexNDArray retval (*this); |
4940
|
807 if (rb.numel () > 0) |
4915
|
808 retval.insert (rb, ra_idx); |
|
809 return retval; |
4758
|
810 } |
|
811 |
5073
|
812 charNDArray |
5275
|
813 NDArray::concat (const charNDArray& rb, const Array<octave_idx_type>& ra_idx) |
5073
|
814 { |
|
815 charNDArray retval (dims ()); |
5275
|
816 octave_idx_type nel = numel (); |
5073
|
817 |
5275
|
818 for (octave_idx_type i = 0; i < nel; i++) |
5073
|
819 { |
|
820 double d = elem (i); |
|
821 |
|
822 if (xisnan (d)) |
|
823 { |
|
824 (*current_liboctave_error_handler) |
|
825 ("invalid conversion from NaN to character"); |
|
826 return retval; |
|
827 } |
|
828 else |
|
829 { |
5275
|
830 octave_idx_type ival = NINTbig (d); |
5073
|
831 |
|
832 if (ival < 0 || ival > UCHAR_MAX) |
|
833 // XXX FIXME XXX -- is there something |
|
834 // better we could do? Should we warn the user? |
|
835 ival = 0; |
|
836 |
|
837 retval.elem (i) = static_cast<char>(ival); |
|
838 } |
|
839 } |
|
840 |
|
841 if (rb.numel () == 0) |
|
842 return retval; |
|
843 |
|
844 retval.insert (rb, ra_idx); |
|
845 return retval; |
|
846 } |
|
847 |
4634
|
848 NDArray |
|
849 real (const ComplexNDArray& a) |
|
850 { |
5275
|
851 octave_idx_type a_len = a.length (); |
4634
|
852 NDArray retval; |
|
853 if (a_len > 0) |
|
854 retval = NDArray (mx_inline_real_dup (a.data (), a_len), a.dims ()); |
|
855 return retval; |
|
856 } |
|
857 |
|
858 NDArray |
|
859 imag (const ComplexNDArray& a) |
|
860 { |
5275
|
861 octave_idx_type a_len = a.length (); |
4634
|
862 NDArray retval; |
|
863 if (a_len > 0) |
|
864 retval = NDArray (mx_inline_imag_dup (a.data (), a_len), a.dims ()); |
|
865 return retval; |
|
866 } |
|
867 |
4915
|
868 NDArray& |
5275
|
869 NDArray::insert (const NDArray& a, octave_idx_type r, octave_idx_type c) |
4915
|
870 { |
|
871 Array<double>::insert (a, r, c); |
|
872 return *this; |
|
873 } |
|
874 |
|
875 NDArray& |
5275
|
876 NDArray::insert (const NDArray& a, const Array<octave_idx_type>& ra_idx) |
4915
|
877 { |
|
878 Array<double>::insert (a, ra_idx); |
|
879 return *this; |
|
880 } |
|
881 |
4634
|
882 NDArray |
4569
|
883 NDArray::abs (void) const |
|
884 { |
4634
|
885 NDArray retval (dims ()); |
4569
|
886 |
5275
|
887 octave_idx_type nel = nelem (); |
4634
|
888 |
5275
|
889 for (octave_idx_type i = 0; i < nel; i++) |
4634
|
890 retval(i) = fabs (elem (i)); |
4569
|
891 |
|
892 return retval; |
|
893 } |
|
894 |
4532
|
895 Matrix |
|
896 NDArray::matrix_value (void) const |
|
897 { |
|
898 Matrix retval; |
|
899 |
|
900 int nd = ndims (); |
|
901 |
|
902 switch (nd) |
|
903 { |
|
904 case 1: |
|
905 retval = Matrix (Array2<double> (*this, dimensions(0), 1)); |
|
906 break; |
|
907 |
|
908 case 2: |
|
909 retval = Matrix (Array2<double> (*this, dimensions(0), dimensions(1))); |
|
910 break; |
|
911 |
|
912 default: |
|
913 (*current_liboctave_error_handler) |
4770
|
914 ("invalid conversion of NDArray to Matrix"); |
4532
|
915 break; |
|
916 } |
|
917 |
|
918 return retval; |
|
919 } |
|
920 |
|
921 void |
5275
|
922 NDArray::increment_index (Array<octave_idx_type>& ra_idx, |
4532
|
923 const dim_vector& dimensions, |
|
924 int start_dimension) |
|
925 { |
|
926 ::increment_index (ra_idx, dimensions, start_dimension); |
|
927 } |
|
928 |
5275
|
929 octave_idx_type |
|
930 NDArray::compute_index (Array<octave_idx_type>& ra_idx, |
4556
|
931 const dim_vector& dimensions) |
|
932 { |
|
933 return ::compute_index (ra_idx, dimensions); |
|
934 } |
|
935 |
4687
|
936 // This contains no information on the array structure !!! |
|
937 std::ostream& |
|
938 operator << (std::ostream& os, const NDArray& a) |
|
939 { |
5275
|
940 octave_idx_type nel = a.nelem (); |
4687
|
941 |
5275
|
942 for (octave_idx_type i = 0; i < nel; i++) |
4687
|
943 { |
|
944 os << " "; |
|
945 octave_write_double (os, a.elem (i)); |
|
946 os << "\n"; |
|
947 } |
|
948 return os; |
|
949 } |
|
950 |
|
951 std::istream& |
|
952 operator >> (std::istream& is, NDArray& a) |
|
953 { |
5275
|
954 octave_idx_type nel = a.nelem (); |
4687
|
955 |
|
956 if (nel < 1 ) |
|
957 is.clear (std::ios::badbit); |
|
958 else |
|
959 { |
|
960 double tmp; |
5275
|
961 for (octave_idx_type i = 0; i < nel; i++) |
4687
|
962 { |
|
963 tmp = octave_read_double (is); |
|
964 if (is) |
|
965 a.elem (i) = tmp; |
|
966 else |
|
967 goto done; |
|
968 } |
|
969 } |
|
970 |
|
971 done: |
|
972 |
|
973 return is; |
|
974 } |
|
975 |
4844
|
976 // XXX FIXME XXX -- it would be nice to share code among the min/max |
|
977 // functions below. |
|
978 |
|
979 #define EMPTY_RETURN_CHECK(T) \ |
|
980 if (nel == 0) \ |
|
981 return T (dv); |
|
982 |
|
983 NDArray |
|
984 min (double d, const NDArray& m) |
|
985 { |
|
986 dim_vector dv = m.dims (); |
5275
|
987 octave_idx_type nel = dv.numel (); |
4844
|
988 |
|
989 EMPTY_RETURN_CHECK (NDArray); |
|
990 |
|
991 NDArray result (dv); |
|
992 |
5275
|
993 for (octave_idx_type i = 0; i < nel; i++) |
4844
|
994 { |
|
995 OCTAVE_QUIT; |
|
996 result (i) = xmin (d, m (i)); |
|
997 } |
|
998 |
|
999 return result; |
|
1000 } |
|
1001 |
|
1002 NDArray |
|
1003 min (const NDArray& m, double d) |
|
1004 { |
|
1005 dim_vector dv = m.dims (); |
5275
|
1006 octave_idx_type nel = dv.numel (); |
4844
|
1007 |
|
1008 EMPTY_RETURN_CHECK (NDArray); |
|
1009 |
|
1010 NDArray result (dv); |
|
1011 |
5275
|
1012 for (octave_idx_type i = 0; i < nel; i++) |
4844
|
1013 { |
|
1014 OCTAVE_QUIT; |
|
1015 result (i) = xmin (d, m (i)); |
|
1016 } |
|
1017 |
|
1018 return result; |
|
1019 } |
|
1020 |
|
1021 NDArray |
|
1022 min (const NDArray& a, const NDArray& b) |
|
1023 { |
|
1024 dim_vector dv = a.dims (); |
5275
|
1025 octave_idx_type nel = dv.numel (); |
4844
|
1026 |
|
1027 if (dv != b.dims ()) |
|
1028 { |
|
1029 (*current_liboctave_error_handler) |
|
1030 ("two-arg min expecting args of same size"); |
|
1031 return NDArray (); |
|
1032 } |
|
1033 |
|
1034 EMPTY_RETURN_CHECK (NDArray); |
|
1035 |
|
1036 NDArray result (dv); |
|
1037 |
5275
|
1038 for (octave_idx_type i = 0; i < nel; i++) |
4844
|
1039 { |
|
1040 OCTAVE_QUIT; |
|
1041 result (i) = xmin (a (i), b (i)); |
|
1042 } |
|
1043 |
|
1044 return result; |
|
1045 } |
|
1046 |
|
1047 NDArray |
|
1048 max (double d, const NDArray& m) |
|
1049 { |
|
1050 dim_vector dv = m.dims (); |
5275
|
1051 octave_idx_type nel = dv.numel (); |
4844
|
1052 |
|
1053 EMPTY_RETURN_CHECK (NDArray); |
|
1054 |
|
1055 NDArray result (dv); |
|
1056 |
5275
|
1057 for (octave_idx_type i = 0; i < nel; i++) |
4844
|
1058 { |
|
1059 OCTAVE_QUIT; |
|
1060 result (i) = xmax (d, m (i)); |
|
1061 } |
|
1062 |
|
1063 return result; |
|
1064 } |
|
1065 |
|
1066 NDArray |
|
1067 max (const NDArray& m, double d) |
|
1068 { |
|
1069 dim_vector dv = m.dims (); |
5275
|
1070 octave_idx_type nel = dv.numel (); |
4844
|
1071 |
|
1072 EMPTY_RETURN_CHECK (NDArray); |
|
1073 |
|
1074 NDArray result (dv); |
|
1075 |
5275
|
1076 for (octave_idx_type i = 0; i < nel; i++) |
4844
|
1077 { |
|
1078 OCTAVE_QUIT; |
|
1079 result (i) = xmax (d, m (i)); |
|
1080 } |
|
1081 |
|
1082 return result; |
|
1083 } |
|
1084 |
|
1085 NDArray |
|
1086 max (const NDArray& a, const NDArray& b) |
|
1087 { |
|
1088 dim_vector dv = a.dims (); |
5275
|
1089 octave_idx_type nel = dv.numel (); |
4844
|
1090 |
|
1091 if (dv != b.dims ()) |
|
1092 { |
|
1093 (*current_liboctave_error_handler) |
|
1094 ("two-arg max expecting args of same size"); |
|
1095 return NDArray (); |
|
1096 } |
|
1097 |
|
1098 EMPTY_RETURN_CHECK (NDArray); |
|
1099 |
|
1100 NDArray result (dv); |
|
1101 |
5275
|
1102 for (octave_idx_type i = 0; i < nel; i++) |
4844
|
1103 { |
|
1104 OCTAVE_QUIT; |
|
1105 result (i) = xmax (a (i), b (i)); |
|
1106 } |
|
1107 |
|
1108 return result; |
|
1109 } |
|
1110 |
4543
|
1111 NDS_CMP_OPS(NDArray, , double, ) |
|
1112 NDS_BOOL_OPS(NDArray, double, 0.0) |
|
1113 |
|
1114 SND_CMP_OPS(double, , NDArray, ) |
|
1115 SND_BOOL_OPS(double, NDArray, 0.0) |
|
1116 |
|
1117 NDND_CMP_OPS(NDArray, , NDArray, ) |
|
1118 NDND_BOOL_OPS(NDArray, NDArray, 0.0) |
|
1119 |
4513
|
1120 /* |
|
1121 ;;; Local Variables: *** |
|
1122 ;;; mode: C++ *** |
|
1123 ;;; End: *** |
|
1124 */ |