Mercurial > hg > octave-nkf
annotate liboctave/Array.cc @ 11698:abe3831a5fc1 release-3-0-x
shortened empty indexing fix
author | David Bateman <dbateman@free.fr> |
---|---|
date | Tue, 18 Mar 2008 15:39:43 -0400 |
parents | 359f464342b3 |
children | 802f5890bf5d |
rev | line source |
---|---|
1993 | 1 // Template array classes |
237 | 2 /* |
3 | |
7017 | 4 Copyright (C) 1993, 1994, 1995, 1996, 1997, 2000, 2002, 2003, 2004, |
5 2005, 2006, 2007 John W. Eaton | |
237 | 6 |
7 This file is part of Octave. | |
8 | |
9 Octave is free software; you can redistribute it and/or modify it | |
10 under the terms of the GNU General Public License as published by the | |
7016 | 11 Free Software Foundation; either version 3 of the License, or (at your |
12 option) any later version. | |
237 | 13 |
14 Octave is distributed in the hope that it will be useful, but WITHOUT | |
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
17 for more details. | |
18 | |
19 You should have received a copy of the GNU General Public License | |
7016 | 20 along with Octave; see the file COPYING. If not, see |
21 <http://www.gnu.org/licenses/>. | |
237 | 22 |
23 */ | |
24 | |
25 #ifdef HAVE_CONFIG_H | |
1192 | 26 #include <config.h> |
237 | 27 #endif |
28 | |
1367 | 29 #include <cassert> |
4518 | 30 #include <climits> |
449 | 31 |
3503 | 32 #include <iostream> |
5765 | 33 #include <sstream> |
5607 | 34 #include <vector> |
6674 | 35 #include <new> |
1560 | 36 |
237 | 37 #include "Array.h" |
4588 | 38 #include "Array-util.h" |
4517 | 39 #include "Range.h" |
1560 | 40 #include "idx-vector.h" |
41 #include "lo-error.h" | |
42 | |
1360 | 43 // One dimensional array class. Handles the reference counting for |
44 // all the derived classes. | |
237 | 45 |
46 template <class T> | |
4834 | 47 Array<T>::Array (const Array<T>& a, const dim_vector& dv) |
48 : rep (a.rep), dimensions (dv), idx (0), idx_count (0) | |
49 { | |
50 rep->count++; | |
51 | |
52 if (a.numel () < dv.numel ()) | |
53 (*current_liboctave_error_handler) | |
54 ("Array::Array (const Array&, const dim_vector&): dimension mismatch"); | |
55 } | |
56 | |
57 template <class T> | |
1619 | 58 Array<T>::~Array (void) |
59 { | |
60 if (--rep->count <= 0) | |
61 delete rep; | |
62 | |
63 delete [] idx; | |
4513 | 64 } |
65 | |
4532 | 66 template <class T> |
67 Array<T> | |
68 Array<T>::squeeze (void) const | |
69 { | |
70 Array<T> retval = *this; | |
71 | |
4929 | 72 if (ndims () > 2) |
4532 | 73 { |
4929 | 74 bool dims_changed = false; |
75 | |
76 dim_vector new_dimensions = dimensions; | |
77 | |
78 int k = 0; | |
79 | |
80 for (int i = 0; i < ndims (); i++) | |
4759 | 81 { |
4929 | 82 if (dimensions(i) == 1) |
83 dims_changed = true; | |
84 else | |
85 new_dimensions(k++) = dimensions(i); | |
86 } | |
87 | |
88 if (dims_changed) | |
89 { | |
90 switch (k) | |
91 { | |
92 case 0: | |
93 new_dimensions = dim_vector (1, 1); | |
94 break; | |
95 | |
96 case 1: | |
4759 | 97 { |
5275 | 98 octave_idx_type tmp = new_dimensions(0); |
4929 | 99 |
100 new_dimensions.resize (2); | |
101 | |
4759 | 102 new_dimensions(0) = tmp; |
103 new_dimensions(1) = 1; | |
104 } | |
4929 | 105 break; |
106 | |
107 default: | |
108 new_dimensions.resize (k); | |
109 break; | |
110 } | |
4759 | 111 } |
4532 | 112 |
5775 | 113 // FIXME -- it would be better if we did not have to do |
5047 | 114 // this, so we could share the data while still having different |
115 // dimension vectors. | |
116 | |
4532 | 117 retval.make_unique (); |
118 | |
119 retval.dimensions = new_dimensions; | |
120 } | |
121 | |
122 return retval; | |
123 } | |
124 | |
6674 | 125 // KLUGE |
126 | |
127 // The following get_size functions will throw a std::bad_alloc () | |
128 // exception if the requested size is larger than can be indexed by | |
129 // octave_idx_type. This may be smaller than the actual amount of | |
130 // memory that can be safely allocated on a system. However, if we | |
131 // don't fail here, we can end up with a mysterious crash inside a | |
132 // function that is iterating over an array using octave_idx_type | |
133 // indices. | |
134 | |
4513 | 135 // A guess (should be quite conservative). |
136 #define MALLOC_OVERHEAD 1024 | |
137 | |
138 template <class T> | |
5275 | 139 octave_idx_type |
140 Array<T>::get_size (octave_idx_type r, octave_idx_type c) | |
4513 | 141 { |
142 static int nl; | |
143 static double dl | |
5275 | 144 = frexp (static_cast<double> |
145 (std::numeric_limits<octave_idx_type>::max() - MALLOC_OVERHEAD) / sizeof (T), &nl); | |
4513 | 146 |
147 int nr, nc; | |
5275 | 148 double dr = frexp (static_cast<double> (r), &nr); // r = dr * 2^nr |
149 double dc = frexp (static_cast<double> (c), &nc); // c = dc * 2^nc | |
4513 | 150 |
151 int nt = nr + nc; | |
152 double dt = dr * dc; | |
153 | |
4532 | 154 if (dt < 0.5) |
4513 | 155 { |
156 nt--; | |
157 dt *= 2; | |
158 } | |
159 | |
6674 | 160 if (nt < nl || (nt == nl && dt < dl)) |
161 return r * c; | |
162 else | |
163 { | |
164 throw std::bad_alloc (); | |
165 return 0; | |
166 } | |
237 | 167 } |
168 | |
169 template <class T> | |
5275 | 170 octave_idx_type |
171 Array<T>::get_size (octave_idx_type r, octave_idx_type c, octave_idx_type p) | |
237 | 172 { |
4513 | 173 static int nl; |
174 static double dl | |
175 = frexp (static_cast<double> | |
5275 | 176 (std::numeric_limits<octave_idx_type>::max() - MALLOC_OVERHEAD) / sizeof (T), &nl); |
4513 | 177 |
178 int nr, nc, np; | |
179 double dr = frexp (static_cast<double> (r), &nr); | |
180 double dc = frexp (static_cast<double> (c), &nc); | |
181 double dp = frexp (static_cast<double> (p), &np); | |
182 | |
183 int nt = nr + nc + np; | |
184 double dt = dr * dc * dp; | |
185 | |
4532 | 186 if (dt < 0.5) |
659 | 187 { |
4513 | 188 nt--; |
189 dt *= 2; | |
237 | 190 |
4532 | 191 if (dt < 0.5) |
192 { | |
193 nt--; | |
194 dt *= 2; | |
195 } | |
659 | 196 } |
1619 | 197 |
6674 | 198 if (nt < nl || (nt == nl && dt < dl)) |
199 return r * c * p; | |
200 else | |
201 { | |
202 throw std::bad_alloc (); | |
203 return 0; | |
204 } | |
237 | 205 } |
206 | |
207 template <class T> | |
5275 | 208 octave_idx_type |
4513 | 209 Array<T>::get_size (const dim_vector& ra_idx) |
237 | 210 { |
4513 | 211 static int nl; |
212 static double dl | |
213 = frexp (static_cast<double> | |
5275 | 214 (std::numeric_limits<octave_idx_type>::max() - MALLOC_OVERHEAD) / sizeof (T), &nl); |
4513 | 215 |
216 int n = ra_idx.length (); | |
217 | |
218 int nt = 0; | |
219 double dt = 1; | |
220 | |
221 for (int i = 0; i < n; i++) | |
237 | 222 { |
4513 | 223 int nra_idx; |
224 double dra_idx = frexp (static_cast<double> (ra_idx(i)), &nra_idx); | |
225 | |
226 nt += nra_idx; | |
227 dt *= dra_idx; | |
4532 | 228 |
229 if (dt < 0.5) | |
230 { | |
231 nt--; | |
232 dt *= 2; | |
233 } | |
237 | 234 } |
235 | |
4513 | 236 if (nt < nl || (nt == nl && dt < dl)) |
237 { | |
6674 | 238 octave_idx_type retval = 1; |
4513 | 239 |
240 for (int i = 0; i < n; i++) | |
241 retval *= ra_idx(i); | |
6674 | 242 |
243 return retval; | |
4513 | 244 } |
6674 | 245 else |
246 { | |
247 throw std::bad_alloc (); | |
248 return 0; | |
249 } | |
237 | 250 } |
251 | |
4513 | 252 #undef MALLOC_OVERHEAD |
253 | |
237 | 254 template <class T> |
5275 | 255 octave_idx_type |
256 Array<T>::compute_index (const Array<octave_idx_type>& ra_idx) const | |
237 | 257 { |
5275 | 258 octave_idx_type retval = -1; |
4513 | 259 |
260 int n = dimensions.length (); | |
261 | |
262 if (n > 0 && n == ra_idx.length ()) | |
237 | 263 { |
4513 | 264 retval = ra_idx(--n); |
237 | 265 |
4513 | 266 while (--n >= 0) |
267 { | |
268 retval *= dimensions(n); | |
269 retval += ra_idx(n); | |
270 } | |
271 } | |
272 else | |
273 (*current_liboctave_error_handler) | |
274 ("Array<T>::compute_index: invalid ra_idxing operation"); | |
237 | 275 |
4513 | 276 return retval; |
237 | 277 } |
278 | |
2049 | 279 template <class T> |
280 T | |
5275 | 281 Array<T>::range_error (const char *fcn, octave_idx_type n) const |
2049 | 282 { |
2109 | 283 (*current_liboctave_error_handler) ("%s (%d): range error", fcn, n); |
2049 | 284 return T (); |
285 } | |
286 | |
287 template <class T> | |
288 T& | |
5275 | 289 Array<T>::range_error (const char *fcn, octave_idx_type n) |
2049 | 290 { |
2109 | 291 (*current_liboctave_error_handler) ("%s (%d): range error", fcn, n); |
2049 | 292 static T foo; |
293 return foo; | |
294 } | |
295 | |
3933 | 296 template <class T> |
4513 | 297 T |
5275 | 298 Array<T>::range_error (const char *fcn, octave_idx_type i, octave_idx_type j) const |
4513 | 299 { |
300 (*current_liboctave_error_handler) | |
301 ("%s (%d, %d): range error", fcn, i, j); | |
302 return T (); | |
303 } | |
304 | |
305 template <class T> | |
306 T& | |
5275 | 307 Array<T>::range_error (const char *fcn, octave_idx_type i, octave_idx_type j) |
4513 | 308 { |
309 (*current_liboctave_error_handler) | |
310 ("%s (%d, %d): range error", fcn, i, j); | |
311 static T foo; | |
312 return foo; | |
313 } | |
314 | |
315 template <class T> | |
316 T | |
5275 | 317 Array<T>::range_error (const char *fcn, octave_idx_type i, octave_idx_type j, octave_idx_type k) const |
4513 | 318 { |
319 (*current_liboctave_error_handler) | |
320 ("%s (%d, %d, %d): range error", fcn, i, j, k); | |
321 return T (); | |
322 } | |
323 | |
324 template <class T> | |
325 T& | |
5275 | 326 Array<T>::range_error (const char *fcn, octave_idx_type i, octave_idx_type j, octave_idx_type k) |
4513 | 327 { |
328 (*current_liboctave_error_handler) | |
329 ("%s (%d, %d, %d): range error", fcn, i, j, k); | |
330 static T foo; | |
331 return foo; | |
332 } | |
333 | |
334 template <class T> | |
335 T | |
6867 | 336 Array<T>::range_error (const char *fcn, const Array<octave_idx_type>& ra_idx) const |
4513 | 337 { |
5765 | 338 std::ostringstream buf; |
4661 | 339 |
340 buf << fcn << " ("; | |
341 | |
5275 | 342 octave_idx_type n = ra_idx.length (); |
4661 | 343 |
344 if (n > 0) | |
345 buf << ra_idx(0); | |
346 | |
5275 | 347 for (octave_idx_type i = 1; i < n; i++) |
4661 | 348 buf << ", " << ra_idx(i); |
349 | |
350 buf << "): range error"; | |
351 | |
5765 | 352 std::string buf_str = buf.str (); |
353 | |
354 (*current_liboctave_error_handler) (buf_str.c_str ()); | |
4513 | 355 |
356 return T (); | |
357 } | |
358 | |
359 template <class T> | |
360 T& | |
6867 | 361 Array<T>::range_error (const char *fcn, const Array<octave_idx_type>& ra_idx) |
4513 | 362 { |
5765 | 363 std::ostringstream buf; |
4661 | 364 |
365 buf << fcn << " ("; | |
366 | |
5275 | 367 octave_idx_type n = ra_idx.length (); |
4661 | 368 |
369 if (n > 0) | |
370 buf << ra_idx(0); | |
371 | |
5275 | 372 for (octave_idx_type i = 1; i < n; i++) |
4661 | 373 buf << ", " << ra_idx(i); |
374 | |
375 buf << "): range error"; | |
376 | |
5765 | 377 std::string buf_str = buf.str (); |
378 | |
379 (*current_liboctave_error_handler) (buf_str.c_str ()); | |
4513 | 380 |
381 static T foo; | |
382 return foo; | |
383 } | |
384 | |
385 template <class T> | |
4567 | 386 Array<T> |
387 Array<T>::reshape (const dim_vector& new_dims) const | |
388 { | |
389 Array<T> retval; | |
390 | |
391 if (dimensions != new_dims) | |
392 { | |
393 if (dimensions.numel () == new_dims.numel ()) | |
394 retval = Array<T> (*this, new_dims); | |
395 else | |
396 (*current_liboctave_error_handler) ("reshape: size mismatch"); | |
397 } | |
4916 | 398 else |
399 retval = *this; | |
4567 | 400 |
401 return retval; | |
402 } | |
403 | |
7241 | 404 |
5607 | 405 |
4567 | 406 template <class T> |
4593 | 407 Array<T> |
5607 | 408 Array<T>::permute (const Array<octave_idx_type>& perm_vec_arg, bool inv) const |
4593 | 409 { |
410 Array<T> retval; | |
411 | |
5607 | 412 Array<octave_idx_type> perm_vec = perm_vec_arg; |
413 | |
4593 | 414 dim_vector dv = dims (); |
415 dim_vector dv_new; | |
416 | |
5148 | 417 int perm_vec_len = perm_vec.length (); |
418 | |
419 if (perm_vec_len < dv.length ()) | |
420 (*current_liboctave_error_handler) | |
421 ("%s: invalid permutation vector", inv ? "ipermute" : "permute"); | |
422 | |
423 dv_new.resize (perm_vec_len); | |
424 | |
425 // Append singleton dimensions as needed. | |
426 dv.resize (perm_vec_len, 1); | |
427 | |
4593 | 428 // Need this array to check for identical elements in permutation array. |
5148 | 429 Array<bool> checked (perm_vec_len, false); |
4593 | 430 |
431 // Find dimension vector of permuted array. | |
5148 | 432 for (int i = 0; i < perm_vec_len; i++) |
4593 | 433 { |
5275 | 434 octave_idx_type perm_elt = perm_vec.elem (i); |
5148 | 435 |
436 if (perm_elt >= perm_vec_len || perm_elt < 0) | |
4593 | 437 { |
438 (*current_liboctave_error_handler) | |
5148 | 439 ("%s: permutation vector contains an invalid element", |
440 inv ? "ipermute" : "permute"); | |
4593 | 441 |
442 return retval; | |
443 } | |
444 | |
5148 | 445 if (checked.elem(perm_elt)) |
4593 | 446 { |
447 (*current_liboctave_error_handler) | |
5148 | 448 ("%s: permutation vector cannot contain identical elements", |
449 inv ? "ipermute" : "permute"); | |
4593 | 450 |
451 return retval; | |
452 } | |
453 else | |
5148 | 454 checked.elem(perm_elt) = true; |
455 | |
456 dv_new(i) = dv(perm_elt); | |
4593 | 457 } |
458 | |
5607 | 459 int nd = dv.length (); |
460 | |
5775 | 461 // FIXME -- it would be nice to have a sort method in the |
5607 | 462 // Array class that also returns the sort indices. |
463 | |
464 if (inv) | |
465 { | |
466 OCTAVE_LOCAL_BUFFER (permute_vector, pvec, nd); | |
467 | |
468 for (int i = 0; i < nd; i++) | |
469 { | |
470 pvec[i].pidx = perm_vec(i); | |
471 pvec[i].iidx = i; | |
472 } | |
473 | |
474 octave_qsort (pvec, static_cast<size_t> (nd), | |
475 sizeof (permute_vector), permute_vector_compare); | |
476 | |
477 for (int i = 0; i < nd; i++) | |
478 { | |
479 perm_vec(i) = pvec[i].iidx; | |
480 dv_new(i) = dv(perm_vec(i)); | |
481 } | |
482 } | |
483 | |
4593 | 484 retval.resize (dv_new); |
485 | |
5940 | 486 if (numel () > 0) |
5607 | 487 { |
5940 | 488 Array<octave_idx_type> cp (nd+1, 1); |
489 for (octave_idx_type i = 1; i < nd+1; i++) | |
490 cp(i) = cp(i-1) * dv(i-1); | |
491 | |
492 octave_idx_type incr = cp(perm_vec(0)); | |
493 | |
494 Array<octave_idx_type> base_delta (nd-1, 0); | |
495 Array<octave_idx_type> base_delta_max (nd-1); | |
496 Array<octave_idx_type> base_incr (nd-1); | |
497 for (octave_idx_type i = 0; i < nd-1; i++) | |
5607 | 498 { |
5940 | 499 base_delta_max(i) = dv_new(i+1); |
500 base_incr(i) = cp(perm_vec(i+1)); | |
5607 | 501 } |
502 | |
5940 | 503 octave_idx_type nr_new = dv_new(0); |
504 octave_idx_type nel_new = dv_new.numel (); | |
505 octave_idx_type n = nel_new / nr_new; | |
506 | |
507 octave_idx_type k = 0; | |
508 | |
509 for (octave_idx_type i = 0; i < n; i++) | |
5607 | 510 { |
5940 | 511 octave_idx_type iidx = 0; |
512 for (octave_idx_type kk = 0; kk < nd-1; kk++) | |
513 iidx += base_delta(kk) * base_incr(kk); | |
514 | |
515 for (octave_idx_type j = 0; j < nr_new; j++) | |
5607 | 516 { |
5940 | 517 OCTAVE_QUIT; |
518 | |
519 retval(k++) = elem(iidx); | |
520 iidx += incr; | |
521 } | |
522 | |
523 base_delta(0)++; | |
524 | |
525 for (octave_idx_type kk = 0; kk < nd-2; kk++) | |
526 { | |
527 if (base_delta(kk) == base_delta_max(kk)) | |
528 { | |
529 base_delta(kk) = 0; | |
530 base_delta(kk+1)++; | |
531 } | |
5607 | 532 } |
533 } | |
4593 | 534 } |
535 | |
5340 | 536 retval.chop_trailing_singletons (); |
5338 | 537 |
4593 | 538 return retval; |
539 } | |
540 | |
541 template <class T> | |
4513 | 542 void |
5275 | 543 Array<T>::resize_no_fill (octave_idx_type n) |
4513 | 544 { |
545 if (n < 0) | |
546 { | |
547 (*current_liboctave_error_handler) | |
548 ("can't resize to negative dimension"); | |
549 return; | |
550 } | |
551 | |
552 if (n == length ()) | |
553 return; | |
554 | |
555 typename Array<T>::ArrayRep *old_rep = rep; | |
556 const T *old_data = data (); | |
5275 | 557 octave_idx_type old_len = length (); |
4513 | 558 |
559 rep = new typename Array<T>::ArrayRep (n); | |
560 | |
561 dimensions = dim_vector (n); | |
562 | |
4747 | 563 if (n > 0 && old_data && old_len > 0) |
4513 | 564 { |
5275 | 565 octave_idx_type min_len = old_len < n ? old_len : n; |
566 | |
567 for (octave_idx_type i = 0; i < min_len; i++) | |
4513 | 568 xelem (i) = old_data[i]; |
569 } | |
570 | |
571 if (--old_rep->count <= 0) | |
572 delete old_rep; | |
573 } | |
574 | |
575 template <class T> | |
576 void | |
4587 | 577 Array<T>::resize_no_fill (const dim_vector& dv) |
4513 | 578 { |
5275 | 579 octave_idx_type n = dv.length (); |
580 | |
581 for (octave_idx_type i = 0; i < n; i++) | |
4513 | 582 { |
4587 | 583 if (dv(i) < 0) |
4513 | 584 { |
585 (*current_liboctave_error_handler) | |
586 ("can't resize to negative dimension"); | |
587 return; | |
588 } | |
589 } | |
590 | |
4548 | 591 bool same_size = true; |
592 | |
593 if (dimensions.length () != n) | |
594 { | |
595 same_size = false; | |
596 } | |
597 else | |
4513 | 598 { |
5275 | 599 for (octave_idx_type i = 0; i < n; i++) |
4513 | 600 { |
4587 | 601 if (dv(i) != dimensions(i)) |
4548 | 602 { |
603 same_size = false; | |
604 break; | |
605 } | |
4513 | 606 } |
607 } | |
608 | |
4548 | 609 if (same_size) |
4513 | 610 return; |
611 | |
612 typename Array<T>::ArrayRep *old_rep = rep; | |
613 const T *old_data = data (); | |
614 | |
5275 | 615 octave_idx_type ts = get_size (dv); |
4747 | 616 |
617 rep = new typename Array<T>::ArrayRep (ts); | |
4587 | 618 |
4870 | 619 dim_vector dv_old = dimensions; |
5275 | 620 octave_idx_type dv_old_orig_len = dv_old.length (); |
4587 | 621 dimensions = dv; |
5275 | 622 octave_idx_type ts_old = get_size (dv_old); |
4915 | 623 |
624 if (ts > 0 && ts_old > 0 && dv_old_orig_len > 0) | |
4513 | 625 { |
5275 | 626 Array<octave_idx_type> ra_idx (dimensions.length (), 0); |
4747 | 627 |
4870 | 628 if (n > dv_old_orig_len) |
4747 | 629 { |
4870 | 630 dv_old.resize (n); |
631 | |
5275 | 632 for (octave_idx_type i = dv_old_orig_len; i < n; i++) |
4870 | 633 dv_old.elem (i) = 1; |
634 } | |
635 | |
5275 | 636 for (octave_idx_type i = 0; i < ts; i++) |
4870 | 637 { |
638 if (index_in_bounds (ra_idx, dv_old)) | |
639 rep->elem (i) = old_data[get_scalar_idx (ra_idx, dv_old)]; | |
4747 | 640 |
641 increment_index (ra_idx, dimensions); | |
642 } | |
4513 | 643 } |
644 | |
645 if (--old_rep->count <= 0) | |
646 delete old_rep; | |
647 } | |
648 | |
649 template <class T> | |
650 void | |
5275 | 651 Array<T>::resize_no_fill (octave_idx_type r, octave_idx_type c) |
4513 | 652 { |
653 if (r < 0 || c < 0) | |
654 { | |
655 (*current_liboctave_error_handler) | |
656 ("can't resize to negative dimension"); | |
657 return; | |
658 } | |
659 | |
4548 | 660 int n = ndims (); |
661 | |
662 if (n == 0) | |
663 dimensions = dim_vector (0, 0); | |
664 | |
665 assert (ndims () == 2); | |
666 | |
4513 | 667 if (r == dim1 () && c == dim2 ()) |
668 return; | |
669 | |
670 typename Array<T>::ArrayRep *old_rep = Array<T>::rep; | |
671 const T *old_data = data (); | |
672 | |
5275 | 673 octave_idx_type old_d1 = dim1 (); |
674 octave_idx_type old_d2 = dim2 (); | |
675 octave_idx_type old_len = length (); | |
676 | |
677 octave_idx_type ts = get_size (r, c); | |
4747 | 678 |
679 rep = new typename Array<T>::ArrayRep (ts); | |
4513 | 680 |
681 dimensions = dim_vector (r, c); | |
682 | |
4747 | 683 if (ts > 0 && old_data && old_len > 0) |
4513 | 684 { |
5275 | 685 octave_idx_type min_r = old_d1 < r ? old_d1 : r; |
686 octave_idx_type min_c = old_d2 < c ? old_d2 : c; | |
687 | |
688 for (octave_idx_type j = 0; j < min_c; j++) | |
689 for (octave_idx_type i = 0; i < min_r; i++) | |
4513 | 690 xelem (i, j) = old_data[old_d1*j+i]; |
691 } | |
692 | |
693 if (--old_rep->count <= 0) | |
694 delete old_rep; | |
695 } | |
696 | |
697 template <class T> | |
698 void | |
5275 | 699 Array<T>::resize_no_fill (octave_idx_type r, octave_idx_type c, octave_idx_type p) |
4513 | 700 { |
701 if (r < 0 || c < 0 || p < 0) | |
702 { | |
703 (*current_liboctave_error_handler) | |
704 ("can't resize to negative dimension"); | |
705 return; | |
706 } | |
707 | |
4548 | 708 int n = ndims (); |
709 | |
710 if (n == 0) | |
711 dimensions = dim_vector (0, 0, 0); | |
712 | |
713 assert (ndims () == 3); | |
714 | |
4513 | 715 if (r == dim1 () && c == dim2 () && p == dim3 ()) |
716 return; | |
717 | |
718 typename Array<T>::ArrayRep *old_rep = rep; | |
719 const T *old_data = data (); | |
720 | |
5275 | 721 octave_idx_type old_d1 = dim1 (); |
722 octave_idx_type old_d2 = dim2 (); | |
723 octave_idx_type old_d3 = dim3 (); | |
724 octave_idx_type old_len = length (); | |
725 | |
726 octave_idx_type ts = get_size (get_size (r, c), p); | |
4513 | 727 |
728 rep = new typename Array<T>::ArrayRep (ts); | |
729 | |
730 dimensions = dim_vector (r, c, p); | |
731 | |
4747 | 732 if (ts > 0 && old_data && old_len > 0) |
4513 | 733 { |
5275 | 734 octave_idx_type min_r = old_d1 < r ? old_d1 : r; |
735 octave_idx_type min_c = old_d2 < c ? old_d2 : c; | |
736 octave_idx_type min_p = old_d3 < p ? old_d3 : p; | |
737 | |
738 for (octave_idx_type k = 0; k < min_p; k++) | |
739 for (octave_idx_type j = 0; j < min_c; j++) | |
740 for (octave_idx_type i = 0; i < min_r; i++) | |
4513 | 741 xelem (i, j, k) = old_data[old_d1*(old_d2*k+j)+i]; |
742 } | |
743 | |
744 if (--old_rep->count <= 0) | |
745 delete old_rep; | |
746 } | |
747 | |
748 template <class T> | |
749 void | |
5275 | 750 Array<T>::resize_and_fill (octave_idx_type n, const T& val) |
4513 | 751 { |
752 if (n < 0) | |
753 { | |
754 (*current_liboctave_error_handler) | |
755 ("can't resize to negative dimension"); | |
756 return; | |
757 } | |
758 | |
759 if (n == length ()) | |
760 return; | |
761 | |
762 typename Array<T>::ArrayRep *old_rep = rep; | |
763 const T *old_data = data (); | |
5275 | 764 octave_idx_type old_len = length (); |
4513 | 765 |
766 rep = new typename Array<T>::ArrayRep (n); | |
767 | |
768 dimensions = dim_vector (n); | |
769 | |
4747 | 770 if (n > 0) |
4513 | 771 { |
5275 | 772 octave_idx_type min_len = old_len < n ? old_len : n; |
4747 | 773 |
774 if (old_data && old_len > 0) | |
775 { | |
5275 | 776 for (octave_idx_type i = 0; i < min_len; i++) |
4747 | 777 xelem (i) = old_data[i]; |
778 } | |
779 | |
5275 | 780 for (octave_idx_type i = old_len; i < n; i++) |
4747 | 781 xelem (i) = val; |
4513 | 782 } |
783 | |
784 if (--old_rep->count <= 0) | |
785 delete old_rep; | |
786 } | |
787 | |
788 template <class T> | |
789 void | |
5275 | 790 Array<T>::resize_and_fill (octave_idx_type r, octave_idx_type c, const T& val) |
4513 | 791 { |
792 if (r < 0 || c < 0) | |
793 { | |
794 (*current_liboctave_error_handler) | |
795 ("can't resize to negative dimension"); | |
796 return; | |
797 } | |
798 | |
4548 | 799 if (ndims () == 0) |
800 dimensions = dim_vector (0, 0); | |
801 | |
802 assert (ndims () == 2); | |
803 | |
4513 | 804 if (r == dim1 () && c == dim2 ()) |
805 return; | |
806 | |
807 typename Array<T>::ArrayRep *old_rep = Array<T>::rep; | |
808 const T *old_data = data (); | |
809 | |
5275 | 810 octave_idx_type old_d1 = dim1 (); |
811 octave_idx_type old_d2 = dim2 (); | |
812 octave_idx_type old_len = length (); | |
813 | |
814 octave_idx_type ts = get_size (r, c); | |
4747 | 815 |
816 rep = new typename Array<T>::ArrayRep (ts); | |
4513 | 817 |
818 dimensions = dim_vector (r, c); | |
819 | |
4747 | 820 if (ts > 0) |
4513 | 821 { |
5275 | 822 octave_idx_type min_r = old_d1 < r ? old_d1 : r; |
823 octave_idx_type min_c = old_d2 < c ? old_d2 : c; | |
4747 | 824 |
825 if (old_data && old_len > 0) | |
826 { | |
5275 | 827 for (octave_idx_type j = 0; j < min_c; j++) |
828 for (octave_idx_type i = 0; i < min_r; i++) | |
4747 | 829 xelem (i, j) = old_data[old_d1*j+i]; |
830 } | |
831 | |
5275 | 832 for (octave_idx_type j = 0; j < min_c; j++) |
833 for (octave_idx_type i = min_r; i < r; i++) | |
4747 | 834 xelem (i, j) = val; |
835 | |
5275 | 836 for (octave_idx_type j = min_c; j < c; j++) |
837 for (octave_idx_type i = 0; i < r; i++) | |
4747 | 838 xelem (i, j) = val; |
4513 | 839 } |
840 | |
841 if (--old_rep->count <= 0) | |
842 delete old_rep; | |
843 } | |
844 | |
845 template <class T> | |
846 void | |
5275 | 847 Array<T>::resize_and_fill (octave_idx_type r, octave_idx_type c, octave_idx_type p, const T& val) |
4513 | 848 { |
849 if (r < 0 || c < 0 || p < 0) | |
850 { | |
851 (*current_liboctave_error_handler) | |
852 ("can't resize to negative dimension"); | |
853 return; | |
854 } | |
855 | |
4548 | 856 if (ndims () == 0) |
857 dimensions = dim_vector (0, 0, 0); | |
858 | |
859 assert (ndims () == 3); | |
860 | |
4513 | 861 if (r == dim1 () && c == dim2 () && p == dim3 ()) |
862 return; | |
863 | |
864 typename Array<T>::ArrayRep *old_rep = rep; | |
865 const T *old_data = data (); | |
866 | |
5275 | 867 octave_idx_type old_d1 = dim1 (); |
868 octave_idx_type old_d2 = dim2 (); | |
869 octave_idx_type old_d3 = dim3 (); | |
870 | |
871 octave_idx_type old_len = length (); | |
872 | |
873 octave_idx_type ts = get_size (get_size (r, c), p); | |
4513 | 874 |
875 rep = new typename Array<T>::ArrayRep (ts); | |
876 | |
877 dimensions = dim_vector (r, c, p); | |
878 | |
4747 | 879 if (ts > 0) |
880 { | |
5275 | 881 octave_idx_type min_r = old_d1 < r ? old_d1 : r; |
882 octave_idx_type min_c = old_d2 < c ? old_d2 : c; | |
883 octave_idx_type min_p = old_d3 < p ? old_d3 : p; | |
4747 | 884 |
885 if (old_data && old_len > 0) | |
5275 | 886 for (octave_idx_type k = 0; k < min_p; k++) |
887 for (octave_idx_type j = 0; j < min_c; j++) | |
888 for (octave_idx_type i = 0; i < min_r; i++) | |
4747 | 889 xelem (i, j, k) = old_data[old_d1*(old_d2*k+j)+i]; |
890 | |
5775 | 891 // FIXME -- if the copy constructor is expensive, this |
4747 | 892 // may win. Otherwise, it may make more sense to just copy the |
893 // value everywhere when making the new ArrayRep. | |
894 | |
5275 | 895 for (octave_idx_type k = 0; k < min_p; k++) |
896 for (octave_idx_type j = min_c; j < c; j++) | |
897 for (octave_idx_type i = 0; i < min_r; i++) | |
4747 | 898 xelem (i, j, k) = val; |
899 | |
5275 | 900 for (octave_idx_type k = 0; k < min_p; k++) |
901 for (octave_idx_type j = 0; j < c; j++) | |
902 for (octave_idx_type i = min_r; i < r; i++) | |
4747 | 903 xelem (i, j, k) = val; |
904 | |
5275 | 905 for (octave_idx_type k = min_p; k < p; k++) |
906 for (octave_idx_type j = 0; j < c; j++) | |
907 for (octave_idx_type i = 0; i < r; i++) | |
4747 | 908 xelem (i, j, k) = val; |
909 } | |
4513 | 910 |
911 if (--old_rep->count <= 0) | |
912 delete old_rep; | |
913 } | |
914 | |
915 template <class T> | |
916 void | |
4587 | 917 Array<T>::resize_and_fill (const dim_vector& dv, const T& val) |
4513 | 918 { |
5275 | 919 octave_idx_type n = dv.length (); |
920 | |
921 for (octave_idx_type i = 0; i < n; i++) | |
4513 | 922 { |
4587 | 923 if (dv(i) < 0) |
4513 | 924 { |
925 (*current_liboctave_error_handler) | |
926 ("can't resize to negative dimension"); | |
927 return; | |
928 } | |
929 } | |
930 | |
4553 | 931 bool same_size = true; |
932 | |
933 if (dimensions.length () != n) | |
934 { | |
935 same_size = false; | |
936 } | |
937 else | |
4513 | 938 { |
5275 | 939 for (octave_idx_type i = 0; i < n; i++) |
4513 | 940 { |
4587 | 941 if (dv(i) != dimensions(i)) |
4553 | 942 { |
943 same_size = false; | |
944 break; | |
945 } | |
4513 | 946 } |
947 } | |
948 | |
4553 | 949 if (same_size) |
4513 | 950 return; |
951 | |
952 typename Array<T>::ArrayRep *old_rep = rep; | |
953 const T *old_data = data (); | |
954 | |
5275 | 955 octave_idx_type len = get_size (dv); |
4709 | 956 |
4513 | 957 rep = new typename Array<T>::ArrayRep (len); |
958 | |
4707 | 959 dim_vector dv_old = dimensions; |
5275 | 960 octave_idx_type dv_old_orig_len = dv_old.length (); |
4587 | 961 dimensions = dv; |
4513 | 962 |
4870 | 963 if (len > 0 && dv_old_orig_len > 0) |
4513 | 964 { |
5275 | 965 Array<octave_idx_type> ra_idx (dimensions.length (), 0); |
4870 | 966 |
967 if (n > dv_old_orig_len) | |
968 { | |
969 dv_old.resize (n); | |
970 | |
5275 | 971 for (octave_idx_type i = dv_old_orig_len; i < n; i++) |
4870 | 972 dv_old.elem (i) = 1; |
973 } | |
4747 | 974 |
5275 | 975 for (octave_idx_type i = 0; i < len; i++) |
4747 | 976 { |
977 if (index_in_bounds (ra_idx, dv_old)) | |
4870 | 978 rep->elem (i) = old_data[get_scalar_idx (ra_idx, dv_old)]; |
979 else | |
980 rep->elem (i) = val; | |
981 | |
982 increment_index (ra_idx, dimensions); | |
4747 | 983 } |
4513 | 984 } |
4870 | 985 else |
5275 | 986 for (octave_idx_type i = 0; i < len; i++) |
4870 | 987 rep->elem (i) = val; |
4513 | 988 |
989 if (--old_rep->count <= 0) | |
990 delete old_rep; | |
991 } | |
992 | |
993 template <class T> | |
994 Array<T>& | |
5275 | 995 Array<T>::insert (const Array<T>& a, octave_idx_type r, octave_idx_type c) |
4513 | 996 { |
4786 | 997 if (ndims () == 2 && a.ndims () == 2) |
998 insert2 (a, r, c); | |
999 else | |
1000 insertN (a, r, c); | |
1001 | |
1002 return *this; | |
1003 } | |
1004 | |
1005 | |
1006 template <class T> | |
1007 Array<T>& | |
5275 | 1008 Array<T>::insert2 (const Array<T>& a, octave_idx_type r, octave_idx_type c) |
4786 | 1009 { |
5275 | 1010 octave_idx_type a_rows = a.rows (); |
1011 octave_idx_type a_cols = a.cols (); | |
4786 | 1012 |
1013 if (r < 0 || r + a_rows > rows () || c < 0 || c + a_cols > cols ()) | |
1014 { | |
1015 (*current_liboctave_error_handler) ("range error for insert"); | |
1016 return *this; | |
1017 } | |
1018 | |
5275 | 1019 for (octave_idx_type j = 0; j < a_cols; j++) |
1020 for (octave_idx_type i = 0; i < a_rows; i++) | |
4786 | 1021 elem (r+i, c+j) = a.elem (i, j); |
1022 | |
1023 return *this; | |
1024 } | |
1025 | |
1026 template <class T> | |
1027 Array<T>& | |
5275 | 1028 Array<T>::insertN (const Array<T>& a, octave_idx_type r, octave_idx_type c) |
4786 | 1029 { |
4806 | 1030 dim_vector dv = dims (); |
1031 | |
4765 | 1032 dim_vector a_dv = a.dims (); |
1033 | |
1034 int n = a_dv.length (); | |
1035 | |
1036 if (n == dimensions.length ()) | |
4513 | 1037 { |
5275 | 1038 Array<octave_idx_type> a_ra_idx (a_dv.length (), 0); |
4765 | 1039 |
1040 a_ra_idx.elem (0) = r; | |
1041 a_ra_idx.elem (1) = c; | |
1042 | |
1043 for (int i = 0; i < n; i++) | |
1044 { | |
4806 | 1045 if (a_ra_idx(i) < 0 || (a_ra_idx(i) + a_dv(i)) > dv(i)) |
4765 | 1046 { |
1047 (*current_liboctave_error_handler) | |
1048 ("Array<T>::insert: range error for insert"); | |
1049 return *this; | |
1050 } | |
1051 } | |
1052 | |
5275 | 1053 octave_idx_type n_elt = a.numel (); |
4806 | 1054 |
1055 const T *a_data = a.data (); | |
1056 | |
5275 | 1057 octave_idx_type iidx = 0; |
4806 | 1058 |
5275 | 1059 octave_idx_type a_rows = a_dv(0); |
1060 | |
1061 octave_idx_type this_rows = dv(0); | |
4806 | 1062 |
5275 | 1063 octave_idx_type numel_page = a_dv(0) * a_dv(1); |
1064 | |
1065 octave_idx_type count_pages = 0; | |
4806 | 1066 |
5275 | 1067 for (octave_idx_type i = 0; i < n_elt; i++) |
4765 | 1068 { |
4806 | 1069 if (i != 0 && i % a_rows == 0) |
1070 iidx += (this_rows - a_rows); | |
1071 | |
1072 if (i % numel_page == 0) | |
1073 iidx = c * dv(0) + r + dv(0) * dv(1) * count_pages++; | |
1074 | |
1075 elem (iidx++) = a_data[i]; | |
4765 | 1076 } |
4513 | 1077 } |
4765 | 1078 else |
1079 (*current_liboctave_error_handler) | |
1080 ("Array<T>::insert: invalid indexing operation"); | |
4513 | 1081 |
1082 return *this; | |
1083 } | |
1084 | |
1085 template <class T> | |
1086 Array<T>& | |
5275 | 1087 Array<T>::insert (const Array<T>& a, const Array<octave_idx_type>& ra_idx) |
4513 | 1088 { |
5275 | 1089 octave_idx_type n = ra_idx.length (); |
4513 | 1090 |
1091 if (n == dimensions.length ()) | |
1092 { | |
4915 | 1093 dim_vector dva = a.dims (); |
1094 dim_vector dv = dims (); | |
1095 int len_a = dva.length (); | |
5120 | 1096 int non_full_dim = 0; |
4513 | 1097 |
5275 | 1098 for (octave_idx_type i = 0; i < n; i++) |
4513 | 1099 { |
4915 | 1100 if (ra_idx(i) < 0 || (ra_idx(i) + |
1101 (i < len_a ? dva(i) : 1)) > dimensions(i)) | |
4513 | 1102 { |
1103 (*current_liboctave_error_handler) | |
1104 ("Array<T>::insert: range error for insert"); | |
1105 return *this; | |
1106 } | |
5120 | 1107 |
1108 if (dv(i) != (i < len_a ? dva(i) : 1)) | |
1109 non_full_dim++; | |
4513 | 1110 } |
1111 | |
4915 | 1112 if (dva.numel ()) |
1113 { | |
5120 | 1114 if (non_full_dim < 2) |
4915 | 1115 { |
5120 | 1116 // Special case for fast concatenation |
1117 const T *a_data = a.data (); | |
5275 | 1118 octave_idx_type numel_to_move = 1; |
1119 octave_idx_type skip = 0; | |
5120 | 1120 for (int i = 0; i < len_a; i++) |
1121 if (ra_idx(i) == 0 && dva(i) == dv(i)) | |
1122 numel_to_move *= dva(i); | |
1123 else | |
1124 { | |
1125 skip = numel_to_move * (dv(i) - dva(i)); | |
1126 numel_to_move *= dva(i); | |
1127 break; | |
1128 } | |
1129 | |
5275 | 1130 octave_idx_type jidx = ra_idx(n-1); |
5120 | 1131 for (int i = n-2; i >= 0; i--) |
1132 { | |
1133 jidx *= dv(i); | |
1134 jidx += ra_idx(i); | |
1135 } | |
1136 | |
5275 | 1137 octave_idx_type iidx = 0; |
1138 octave_idx_type moves = dva.numel () / numel_to_move; | |
1139 for (octave_idx_type i = 0; i < moves; i++) | |
5120 | 1140 { |
5275 | 1141 for (octave_idx_type j = 0; j < numel_to_move; j++) |
5120 | 1142 elem (jidx++) = a_data[iidx++]; |
1143 jidx += skip; | |
1144 } | |
4915 | 1145 } |
5120 | 1146 else |
4915 | 1147 { |
5120 | 1148 // Generic code |
1149 const T *a_data = a.data (); | |
1150 int nel = a.numel (); | |
5275 | 1151 Array<octave_idx_type> a_idx (n, 0); |
5120 | 1152 |
1153 for (int i = 0; i < nel; i++) | |
1154 { | |
1155 int iidx = a_idx(n-1) + ra_idx(n-1); | |
1156 for (int j = n-2; j >= 0; j--) | |
1157 { | |
1158 iidx *= dv(j); | |
1159 iidx += a_idx(j) + ra_idx(j); | |
1160 } | |
1161 | |
1162 elem (iidx) = a_data[i]; | |
1163 | |
1164 increment_index (a_idx, dva); | |
1165 } | |
4915 | 1166 } |
1167 } | |
4513 | 1168 } |
1169 else | |
1170 (*current_liboctave_error_handler) | |
1171 ("Array<T>::insert: invalid indexing operation"); | |
1172 | |
1173 return *this; | |
1174 } | |
1175 | |
1176 template <class T> | |
1177 Array<T> | |
1178 Array<T>::transpose (void) const | |
1179 { | |
4548 | 1180 assert (ndims () == 2); |
1181 | |
5275 | 1182 octave_idx_type nr = dim1 (); |
1183 octave_idx_type nc = dim2 (); | |
4513 | 1184 |
1185 if (nr > 1 && nc > 1) | |
1186 { | |
1187 Array<T> result (dim_vector (nc, nr)); | |
1188 | |
5275 | 1189 for (octave_idx_type j = 0; j < nc; j++) |
1190 for (octave_idx_type i = 0; i < nr; i++) | |
4513 | 1191 result.xelem (j, i) = xelem (i, j); |
1192 | |
1193 return result; | |
1194 } | |
1195 else | |
1196 { | |
1197 // Fast transpose for vectors and empty matrices | |
1198 return Array<T> (*this, dim_vector (nc, nr)); | |
1199 } | |
1200 } | |
1201 | |
1202 template <class T> | |
1203 T * | |
1204 Array<T>::fortran_vec (void) | |
1205 { | |
6881 | 1206 make_unique (); |
1207 | |
4513 | 1208 return rep->data; |
1209 } | |
1210 | |
1211 template <class T> | |
3933 | 1212 void |
4517 | 1213 Array<T>::maybe_delete_dims (void) |
1214 { | |
4587 | 1215 int nd = dimensions.length (); |
4517 | 1216 |
1217 dim_vector new_dims (1, 1); | |
1218 | |
1219 bool delete_dims = true; | |
1220 | |
4587 | 1221 for (int i = nd - 1; i >= 0; i--) |
4517 | 1222 { |
1223 if (delete_dims) | |
1224 { | |
1225 if (dimensions(i) != 1) | |
1226 { | |
1227 delete_dims = false; | |
1228 | |
1229 new_dims = dim_vector (i + 1, dimensions(i)); | |
1230 } | |
1231 } | |
1232 else | |
1233 new_dims(i) = dimensions(i); | |
1234 } | |
4530 | 1235 |
4587 | 1236 if (nd != new_dims.length ()) |
4517 | 1237 dimensions = new_dims; |
1238 } | |
1239 | |
1240 template <class T> | |
1241 void | |
6881 | 1242 Array<T>::clear_index (void) const |
4517 | 1243 { |
1244 delete [] idx; | |
1245 idx = 0; | |
1246 idx_count = 0; | |
1247 } | |
1248 | |
1249 template <class T> | |
1250 void | |
6881 | 1251 Array<T>::set_index (const idx_vector& idx_arg) const |
4517 | 1252 { |
1253 int nd = ndims (); | |
1254 | |
1255 if (! idx && nd > 0) | |
1256 idx = new idx_vector [nd]; | |
1257 | |
1258 if (idx_count < nd) | |
1259 { | |
1260 idx[idx_count++] = idx_arg; | |
1261 } | |
1262 else | |
1263 { | |
1264 idx_vector *new_idx = new idx_vector [idx_count+1]; | |
1265 | |
1266 for (int i = 0; i < idx_count; i++) | |
1267 new_idx[i] = idx[i]; | |
1268 | |
1269 new_idx[idx_count++] = idx_arg; | |
1270 | |
1271 delete [] idx; | |
1272 | |
1273 idx = new_idx; | |
1274 } | |
1275 } | |
1276 | |
1277 template <class T> | |
1278 void | |
1279 Array<T>::maybe_delete_elements (idx_vector& idx_arg) | |
1280 { | |
1281 switch (ndims ()) | |
1282 { | |
1283 case 1: | |
1284 maybe_delete_elements_1 (idx_arg); | |
1285 break; | |
1286 | |
1287 case 2: | |
1288 maybe_delete_elements_2 (idx_arg); | |
1289 break; | |
1290 | |
1291 default: | |
1292 (*current_liboctave_error_handler) | |
1293 ("Array<T>::maybe_delete_elements: invalid operation"); | |
1294 break; | |
1295 } | |
1296 } | |
1297 | |
1298 template <class T> | |
1299 void | |
1300 Array<T>::maybe_delete_elements_1 (idx_vector& idx_arg) | |
1301 { | |
5275 | 1302 octave_idx_type len = length (); |
4517 | 1303 |
1304 if (len == 0) | |
1305 return; | |
1306 | |
1307 if (idx_arg.is_colon_equiv (len, 1)) | |
1308 resize_no_fill (0); | |
1309 else | |
1310 { | |
1311 int num_to_delete = idx_arg.length (len); | |
1312 | |
1313 if (num_to_delete != 0) | |
1314 { | |
5275 | 1315 octave_idx_type new_len = len; |
1316 | |
1317 octave_idx_type iidx = 0; | |
1318 | |
1319 for (octave_idx_type i = 0; i < len; i++) | |
4517 | 1320 if (i == idx_arg.elem (iidx)) |
1321 { | |
1322 iidx++; | |
1323 new_len--; | |
1324 | |
1325 if (iidx == num_to_delete) | |
1326 break; | |
1327 } | |
1328 | |
1329 if (new_len > 0) | |
1330 { | |
1331 T *new_data = new T [new_len]; | |
1332 | |
5275 | 1333 octave_idx_type ii = 0; |
4517 | 1334 iidx = 0; |
5275 | 1335 for (octave_idx_type i = 0; i < len; i++) |
4517 | 1336 { |
1337 if (iidx < num_to_delete && i == idx_arg.elem (iidx)) | |
1338 iidx++; | |
1339 else | |
1340 { | |
6884 | 1341 new_data[ii] = xelem (i); |
4517 | 1342 ii++; |
1343 } | |
1344 } | |
1345 | |
1346 if (--rep->count <= 0) | |
1347 delete rep; | |
1348 | |
1349 rep = new typename Array<T>::ArrayRep (new_data, new_len); | |
1350 | |
1351 dimensions.resize (1); | |
1352 dimensions(0) = new_len; | |
1353 } | |
1354 else | |
1355 (*current_liboctave_error_handler) | |
1356 ("A(idx) = []: index out of range"); | |
1357 } | |
1358 } | |
1359 } | |
1360 | |
1361 template <class T> | |
1362 void | |
1363 Array<T>::maybe_delete_elements_2 (idx_vector& idx_arg) | |
1364 { | |
4548 | 1365 assert (ndims () == 2); |
1366 | |
5275 | 1367 octave_idx_type nr = dim1 (); |
1368 octave_idx_type nc = dim2 (); | |
4517 | 1369 |
5275 | 1370 octave_idx_type n; |
4517 | 1371 if (nr == 1) |
1372 n = nc; | |
1373 else if (nc == 1) | |
1374 n = nr; | |
1375 else | |
1376 { | |
4756 | 1377 // Reshape to row vector for Matlab compatibility. |
1378 | |
1379 n = nr * nc; | |
1380 nr = 1; | |
1381 nc = n; | |
4517 | 1382 } |
1383 | |
6525 | 1384 if (nr > 0 && nc > 0 && idx_arg.is_colon_equiv (n, 1)) |
4517 | 1385 { |
1386 // Either A(:) = [] or A(idx) = [] with idx enumerating all | |
1387 // elements, so we delete all elements and return [](0x0). To | |
1388 // preserve the orientation of the vector, you have to use | |
1389 // A(idx,:) = [] (delete rows) or A(:,idx) (delete columns). | |
1390 | |
1391 resize_no_fill (0, 0); | |
1392 return; | |
1393 } | |
1394 | |
1395 idx_arg.sort (true); | |
1396 | |
5275 | 1397 octave_idx_type num_to_delete = idx_arg.length (n); |
4517 | 1398 |
1399 if (num_to_delete != 0) | |
1400 { | |
5275 | 1401 octave_idx_type new_n = n; |
1402 | |
1403 octave_idx_type iidx = 0; | |
1404 | |
1405 for (octave_idx_type i = 0; i < n; i++) | |
4517 | 1406 if (i == idx_arg.elem (iidx)) |
1407 { | |
1408 iidx++; | |
1409 new_n--; | |
1410 | |
1411 if (iidx == num_to_delete) | |
1412 break; | |
1413 } | |
1414 | |
1415 if (new_n > 0) | |
1416 { | |
1417 T *new_data = new T [new_n]; | |
1418 | |
5275 | 1419 octave_idx_type ii = 0; |
4517 | 1420 iidx = 0; |
5275 | 1421 for (octave_idx_type i = 0; i < n; i++) |
4517 | 1422 { |
1423 if (iidx < num_to_delete && i == idx_arg.elem (iidx)) | |
1424 iidx++; | |
1425 else | |
1426 { | |
6884 | 1427 new_data[ii] = xelem (i); |
4517 | 1428 |
1429 ii++; | |
1430 } | |
1431 } | |
1432 | |
1433 if (--(Array<T>::rep)->count <= 0) | |
1434 delete Array<T>::rep; | |
1435 | |
1436 Array<T>::rep = new typename Array<T>::ArrayRep (new_data, new_n); | |
1437 | |
1438 dimensions.resize (2); | |
1439 | |
1440 if (nr == 1) | |
1441 { | |
1442 dimensions(0) = 1; | |
1443 dimensions(1) = new_n; | |
1444 } | |
1445 else | |
1446 { | |
1447 dimensions(0) = new_n; | |
1448 dimensions(1) = 1; | |
1449 } | |
1450 } | |
1451 else | |
1452 (*current_liboctave_error_handler) | |
1453 ("A(idx) = []: index out of range"); | |
1454 } | |
1455 } | |
1456 | |
1457 template <class T> | |
1458 void | |
1459 Array<T>::maybe_delete_elements (idx_vector& idx_i, idx_vector& idx_j) | |
1460 { | |
4548 | 1461 assert (ndims () == 2); |
1462 | |
5275 | 1463 octave_idx_type nr = dim1 (); |
1464 octave_idx_type nc = dim2 (); | |
4517 | 1465 |
1466 if (nr == 0 && nc == 0) | |
1467 return; | |
1468 | |
1469 if (idx_i.is_colon ()) | |
1470 { | |
1471 if (idx_j.is_colon ()) | |
1472 { | |
1473 // A(:,:) -- We are deleting columns and rows, so the result | |
1474 // is [](0x0). | |
1475 | |
1476 resize_no_fill (0, 0); | |
1477 return; | |
1478 } | |
1479 | |
1480 if (idx_j.is_colon_equiv (nc, 1)) | |
1481 { | |
1482 // A(:,j) -- We are deleting columns by enumerating them, | |
1483 // If we enumerate all of them, we should have zero columns | |
1484 // with the same number of rows that we started with. | |
1485 | |
1486 resize_no_fill (nr, 0); | |
1487 return; | |
1488 } | |
1489 } | |
1490 | |
1491 if (idx_j.is_colon () && idx_i.is_colon_equiv (nr, 1)) | |
1492 { | |
1493 // A(i,:) -- We are deleting rows by enumerating them. If we | |
1494 // enumerate all of them, we should have zero rows with the | |
1495 // same number of columns that we started with. | |
1496 | |
1497 resize_no_fill (0, nc); | |
1498 return; | |
1499 } | |
1500 | |
1501 if (idx_i.is_colon_equiv (nr, 1)) | |
1502 { | |
1503 if (idx_j.is_colon_equiv (nc, 1)) | |
1504 resize_no_fill (0, 0); | |
1505 else | |
1506 { | |
1507 idx_j.sort (true); | |
1508 | |
5275 | 1509 octave_idx_type num_to_delete = idx_j.length (nc); |
4517 | 1510 |
1511 if (num_to_delete != 0) | |
1512 { | |
1513 if (nr == 1 && num_to_delete == nc) | |
1514 resize_no_fill (0, 0); | |
1515 else | |
1516 { | |
5275 | 1517 octave_idx_type new_nc = nc; |
1518 | |
1519 octave_idx_type iidx = 0; | |
1520 | |
1521 for (octave_idx_type j = 0; j < nc; j++) | |
4517 | 1522 if (j == idx_j.elem (iidx)) |
1523 { | |
1524 iidx++; | |
1525 new_nc--; | |
1526 | |
1527 if (iidx == num_to_delete) | |
1528 break; | |
1529 } | |
1530 | |
1531 if (new_nc > 0) | |
1532 { | |
1533 T *new_data = new T [nr * new_nc]; | |
1534 | |
5275 | 1535 octave_idx_type jj = 0; |
4517 | 1536 iidx = 0; |
5275 | 1537 for (octave_idx_type j = 0; j < nc; j++) |
4517 | 1538 { |
1539 if (iidx < num_to_delete && j == idx_j.elem (iidx)) | |
1540 iidx++; | |
1541 else | |
1542 { | |
5275 | 1543 for (octave_idx_type i = 0; i < nr; i++) |
6884 | 1544 new_data[nr*jj+i] = xelem (i, j); |
4517 | 1545 jj++; |
1546 } | |
1547 } | |
1548 | |
1549 if (--(Array<T>::rep)->count <= 0) | |
1550 delete Array<T>::rep; | |
1551 | |
1552 Array<T>::rep = new typename Array<T>::ArrayRep (new_data, nr * new_nc); | |
1553 | |
1554 dimensions.resize (2); | |
1555 dimensions(1) = new_nc; | |
1556 } | |
1557 else | |
1558 (*current_liboctave_error_handler) | |
1559 ("A(idx) = []: index out of range"); | |
1560 } | |
1561 } | |
1562 } | |
1563 } | |
1564 else if (idx_j.is_colon_equiv (nc, 1)) | |
1565 { | |
1566 if (idx_i.is_colon_equiv (nr, 1)) | |
1567 resize_no_fill (0, 0); | |
1568 else | |
1569 { | |
1570 idx_i.sort (true); | |
1571 | |
5275 | 1572 octave_idx_type num_to_delete = idx_i.length (nr); |
4517 | 1573 |
1574 if (num_to_delete != 0) | |
1575 { | |
1576 if (nc == 1 && num_to_delete == nr) | |
1577 resize_no_fill (0, 0); | |
1578 else | |
1579 { | |
5275 | 1580 octave_idx_type new_nr = nr; |
1581 | |
1582 octave_idx_type iidx = 0; | |
1583 | |
1584 for (octave_idx_type i = 0; i < nr; i++) | |
4517 | 1585 if (i == idx_i.elem (iidx)) |
1586 { | |
1587 iidx++; | |
1588 new_nr--; | |
1589 | |
1590 if (iidx == num_to_delete) | |
1591 break; | |
1592 } | |
1593 | |
1594 if (new_nr > 0) | |
1595 { | |
1596 T *new_data = new T [new_nr * nc]; | |
1597 | |
5275 | 1598 octave_idx_type ii = 0; |
4517 | 1599 iidx = 0; |
5275 | 1600 for (octave_idx_type i = 0; i < nr; i++) |
4517 | 1601 { |
1602 if (iidx < num_to_delete && i == idx_i.elem (iidx)) | |
1603 iidx++; | |
1604 else | |
1605 { | |
5275 | 1606 for (octave_idx_type j = 0; j < nc; j++) |
6884 | 1607 new_data[new_nr*j+ii] = xelem (i, j); |
4517 | 1608 ii++; |
1609 } | |
1610 } | |
1611 | |
1612 if (--(Array<T>::rep)->count <= 0) | |
1613 delete Array<T>::rep; | |
1614 | |
1615 Array<T>::rep = new typename Array<T>::ArrayRep (new_data, new_nr * nc); | |
1616 | |
1617 dimensions.resize (2); | |
1618 dimensions(0) = new_nr; | |
1619 } | |
1620 else | |
1621 (*current_liboctave_error_handler) | |
1622 ("A(idx) = []: index out of range"); | |
1623 } | |
1624 } | |
1625 } | |
1626 } | |
1627 } | |
1628 | |
1629 template <class T> | |
1630 void | |
1631 Array<T>::maybe_delete_elements (idx_vector&, idx_vector&, idx_vector&) | |
1632 { | |
1633 assert (0); | |
1634 } | |
1635 | |
1636 template <class T> | |
1637 void | |
4585 | 1638 Array<T>::maybe_delete_elements (Array<idx_vector>& ra_idx, const T& rfv) |
4517 | 1639 { |
5275 | 1640 octave_idx_type n_idx = ra_idx.length (); |
4517 | 1641 |
1642 dim_vector lhs_dims = dims (); | |
1643 | |
6388 | 1644 int n_lhs_dims = lhs_dims.length (); |
1645 | |
4821 | 1646 if (lhs_dims.all_zero ()) |
1647 return; | |
1648 | |
6384 | 1649 if (n_idx == 1 && ra_idx(0).is_colon ()) |
1650 { | |
1651 resize (dim_vector (0, 0), rfv); | |
1652 return; | |
1653 } | |
1654 | |
6388 | 1655 if (n_idx > n_lhs_dims) |
1656 { | |
1657 for (int i = n_idx; i < n_lhs_dims; i++) | |
1658 { | |
1659 // Ensure that extra indices are either colon or 1. | |
1660 | |
1661 if (! ra_idx(i).is_colon_equiv (1, 1)) | |
1662 { | |
1663 (*current_liboctave_error_handler) | |
1664 ("index exceeds array dimensions"); | |
1665 return; | |
1666 } | |
1667 } | |
1668 | |
1669 ra_idx.resize (n_lhs_dims); | |
1670 | |
1671 n_idx = n_lhs_dims; | |
1672 } | |
4757 | 1673 |
4740 | 1674 Array<int> idx_is_colon (n_idx, 0); |
1675 | |
1676 Array<int> idx_is_colon_equiv (n_idx, 0); | |
4517 | 1677 |
1678 // Initialization of colon arrays. | |
4757 | 1679 |
5275 | 1680 for (octave_idx_type i = 0; i < n_idx; i++) |
4517 | 1681 { |
4585 | 1682 idx_is_colon_equiv(i) = ra_idx(i).is_colon_equiv (lhs_dims(i), 1); |
1683 | |
1684 idx_is_colon(i) = ra_idx(i).is_colon (); | |
4517 | 1685 } |
1686 | |
4755 | 1687 bool idx_ok = true; |
1688 | |
1689 // Check for index out of bounds. | |
1690 | |
5275 | 1691 for (octave_idx_type i = 0 ; i < n_idx - 1; i++) |
4517 | 1692 { |
4755 | 1693 if (! (idx_is_colon(i) || idx_is_colon_equiv(i))) |
1694 { | |
1695 ra_idx(i).sort (true); | |
4757 | 1696 |
4755 | 1697 if (ra_idx(i).max () > lhs_dims(i)) |
1698 { | |
1699 (*current_liboctave_error_handler) | |
1700 ("index exceeds array dimensions"); | |
4757 | 1701 |
4755 | 1702 idx_ok = false; |
1703 break; | |
1704 } | |
1705 else if (ra_idx(i).min () < 0) // I believe this is checked elsewhere | |
1706 { | |
1707 (*current_liboctave_error_handler) | |
1708 ("index must be one or larger"); | |
1709 | |
1710 idx_ok = false; | |
1711 break; | |
1712 } | |
1713 } | |
4517 | 1714 } |
4757 | 1715 |
4755 | 1716 if (n_idx <= n_lhs_dims) |
4517 | 1717 { |
5275 | 1718 octave_idx_type last_idx = ra_idx(n_idx-1).max (); |
1719 | |
1720 octave_idx_type sum_el = lhs_dims(n_idx-1); | |
1721 | |
1722 for (octave_idx_type i = n_idx; i < n_lhs_dims; i++) | |
4755 | 1723 sum_el *= lhs_dims(i); |
1724 | |
1725 if (last_idx > sum_el - 1) | |
1726 { | |
1727 (*current_liboctave_error_handler) | |
1728 ("index exceeds array dimensions"); | |
1729 | |
1730 idx_ok = false; | |
1731 } | |
4757 | 1732 } |
4755 | 1733 |
1734 if (idx_ok) | |
1735 { | |
1736 if (n_idx > 1 | |
1737 && (all_ones (idx_is_colon) || all_ones (idx_is_colon_equiv))) | |
4517 | 1738 { |
4755 | 1739 // A(:,:,:) -- we are deleting elements in all dimensions, so |
1740 // the result is [](0x0x0). | |
1741 | |
1742 dim_vector zeros; | |
1743 zeros.resize (n_idx); | |
1744 | |
1745 for (int i = 0; i < n_idx; i++) | |
1746 zeros(i) = 0; | |
1747 | |
1748 resize (zeros, rfv); | |
4517 | 1749 } |
1750 | |
4755 | 1751 else if (n_idx > 1 |
1752 && num_ones (idx_is_colon) == n_idx - 1 | |
1753 && num_ones (idx_is_colon_equiv) == n_idx) | |
1754 { | |
1755 // A(:,:,j) -- we are deleting elements in one dimension by | |
1756 // enumerating them. | |
1757 // | |
1758 // If we enumerate all of the elements, we should have zero | |
1759 // elements in that dimension with the same number of elements | |
1760 // in the other dimensions that we started with. | |
1761 | |
1762 dim_vector temp_dims; | |
1763 temp_dims.resize (n_idx); | |
1764 | |
5275 | 1765 for (octave_idx_type i = 0; i < n_idx; i++) |
4755 | 1766 { |
1767 if (idx_is_colon (i)) | |
1768 temp_dims(i) = lhs_dims(i); | |
1769 else | |
1770 temp_dims(i) = 0; | |
1771 } | |
1772 | |
1773 resize (temp_dims); | |
1774 } | |
1775 else if (n_idx > 1 && num_ones (idx_is_colon) == n_idx - 1) | |
4741 | 1776 { |
4755 | 1777 // We have colons in all indices except for one. |
1778 // This index tells us which slice to delete | |
1779 | |
1780 if (n_idx < n_lhs_dims) | |
1781 { | |
1782 // Collapse dimensions beyond last index. | |
1783 | |
5781 | 1784 if (! (ra_idx(n_idx-1).is_colon ())) |
1785 (*current_liboctave_warning_with_id_handler) | |
1786 ("Octave:fortran-indexing", | |
1787 "fewer indices than dimensions for N-d array"); | |
4755 | 1788 |
5275 | 1789 for (octave_idx_type i = n_idx; i < n_lhs_dims; i++) |
4755 | 1790 lhs_dims(n_idx-1) *= lhs_dims(i); |
1791 | |
1792 lhs_dims.resize (n_idx); | |
1793 | |
1794 // Reshape *this. | |
1795 dimensions = lhs_dims; | |
1796 } | |
1797 | |
1798 int non_col = 0; | |
1799 | |
1800 // Find the non-colon column. | |
1801 | |
5275 | 1802 for (octave_idx_type i = 0; i < n_idx; i++) |
4755 | 1803 { |
1804 if (! idx_is_colon(i)) | |
1805 non_col = i; | |
1806 } | |
1807 | |
1808 // The length of the non-colon dimension. | |
1809 | |
5275 | 1810 octave_idx_type non_col_dim = lhs_dims (non_col); |
1811 | |
1812 octave_idx_type num_to_delete = ra_idx(non_col).length (lhs_dims (non_col)); | |
4755 | 1813 |
1814 if (num_to_delete > 0) | |
1815 { | |
1816 int temp = lhs_dims.num_ones (); | |
1817 | |
1818 if (non_col_dim == 1) | |
1819 temp--; | |
1820 | |
1821 if (temp == n_idx - 1 && num_to_delete == non_col_dim) | |
1822 { | |
1823 // We have A with (1x1x4), where A(1,:,1:4) | |
1824 // Delete all (0x0x0) | |
1825 | |
1826 dim_vector zero_dims (n_idx, 0); | |
1827 | |
1828 resize (zero_dims, rfv); | |
1829 } | |
1830 else | |
1831 { | |
1832 // New length of non-colon dimension | |
1833 // (calculated in the next for loop) | |
1834 | |
5275 | 1835 octave_idx_type new_dim = non_col_dim; |
1836 | |
1837 octave_idx_type iidx = 0; | |
1838 | |
1839 for (octave_idx_type j = 0; j < non_col_dim; j++) | |
4755 | 1840 if (j == ra_idx(non_col).elem (iidx)) |
1841 { | |
1842 iidx++; | |
1843 | |
1844 new_dim--; | |
1845 | |
1846 if (iidx == num_to_delete) | |
1847 break; | |
1848 } | |
1849 | |
1850 // Creating the new nd array after deletions. | |
1851 | |
1852 if (new_dim > 0) | |
1853 { | |
1854 // Calculate number of elements in new array. | |
1855 | |
5275 | 1856 octave_idx_type num_new_elem=1; |
4755 | 1857 |
1858 for (int i = 0; i < n_idx; i++) | |
1859 { | |
1860 if (i == non_col) | |
1861 num_new_elem *= new_dim; | |
1862 | |
1863 else | |
1864 num_new_elem *= lhs_dims(i); | |
1865 } | |
1866 | |
1867 T *new_data = new T [num_new_elem]; | |
1868 | |
5275 | 1869 Array<octave_idx_type> result_idx (n_lhs_dims, 0); |
4755 | 1870 |
1871 dim_vector new_lhs_dim = lhs_dims; | |
1872 | |
1873 new_lhs_dim(non_col) = new_dim; | |
1874 | |
5275 | 1875 octave_idx_type num_elem = 1; |
1876 | |
1877 octave_idx_type numidx = 0; | |
1878 | |
1879 octave_idx_type n = length (); | |
4755 | 1880 |
1881 for (int i = 0; i < n_lhs_dims; i++) | |
1882 if (i != non_col) | |
1883 num_elem *= lhs_dims(i); | |
1884 | |
1885 num_elem *= ra_idx(non_col).capacity (); | |
1886 | |
5275 | 1887 for (octave_idx_type i = 0; i < n; i++) |
4755 | 1888 { |
1889 if (numidx < num_elem | |
1890 && is_in (result_idx(non_col), ra_idx(non_col))) | |
1891 numidx++; | |
1892 | |
1893 else | |
1894 { | |
5275 | 1895 Array<octave_idx_type> temp_result_idx = result_idx; |
1896 | |
1897 octave_idx_type num_lgt = how_many_lgt (result_idx(non_col), | |
4755 | 1898 ra_idx(non_col)); |
1899 | |
1900 temp_result_idx(non_col) -= num_lgt; | |
1901 | |
5275 | 1902 octave_idx_type kidx |
4755 | 1903 = ::compute_index (temp_result_idx, new_lhs_dim); |
1904 | |
6884 | 1905 new_data[kidx] = xelem (result_idx); |
4755 | 1906 } |
1907 | |
1908 increment_index (result_idx, lhs_dims); | |
1909 } | |
1910 | |
1911 if (--rep->count <= 0) | |
1912 delete rep; | |
1913 | |
1914 rep = new typename Array<T>::ArrayRep (new_data, | |
1915 num_new_elem); | |
1916 | |
1917 dimensions = new_lhs_dim; | |
1918 } | |
1919 } | |
1920 } | |
4517 | 1921 } |
4755 | 1922 else if (n_idx == 1) |
4517 | 1923 { |
4821 | 1924 // This handle cases where we only have one index (not |
1925 // colon). The index denotes which elements we should | |
1926 // delete in the array which can be of any dimension. We | |
1927 // return a column vector, except for the case where we are | |
1928 // operating on a row vector. The elements are numerated | |
1929 // column by column. | |
4755 | 1930 // |
1931 // A(3,3,3)=2; | |
1932 // A(3:5) = []; A(6)=[] | |
4757 | 1933 |
5275 | 1934 octave_idx_type lhs_numel = numel (); |
4757 | 1935 |
4821 | 1936 idx_vector idx_vec = ra_idx(0); |
1937 | |
5781 | 1938 idx_vec.freeze (lhs_numel, 0, true); |
4821 | 1939 |
1940 idx_vec.sort (true); | |
1941 | |
5275 | 1942 octave_idx_type num_to_delete = idx_vec.length (lhs_numel); |
4821 | 1943 |
1944 if (num_to_delete > 0) | |
4517 | 1945 { |
5275 | 1946 octave_idx_type new_numel = lhs_numel - num_to_delete; |
4821 | 1947 |
1948 T *new_data = new T[new_numel]; | |
1949 | |
5275 | 1950 Array<octave_idx_type> lhs_ra_idx (ndims (), 0); |
1951 | |
1952 octave_idx_type ii = 0; | |
1953 octave_idx_type iidx = 0; | |
1954 | |
1955 for (octave_idx_type i = 0; i < lhs_numel; i++) | |
4755 | 1956 { |
4821 | 1957 if (iidx < num_to_delete && i == idx_vec.elem (iidx)) |
1958 { | |
1959 iidx++; | |
1960 } | |
1961 else | |
1962 { | |
6884 | 1963 new_data[ii++] = xelem (lhs_ra_idx); |
4821 | 1964 } |
1965 | |
1966 increment_index (lhs_ra_idx, lhs_dims); | |
1967 } | |
1968 | |
1969 if (--(Array<T>::rep)->count <= 0) | |
1970 delete Array<T>::rep; | |
1971 | |
1972 Array<T>::rep = new typename Array<T>::ArrayRep (new_data, new_numel); | |
1973 | |
1974 dimensions.resize (2); | |
1975 | |
1976 if (lhs_dims.length () == 2 && lhs_dims(1) == 1) | |
1977 { | |
1978 dimensions(0) = new_numel; | |
1979 dimensions(1) = 1; | |
4755 | 1980 } |
1981 else | |
1982 { | |
4821 | 1983 dimensions(0) = 1; |
1984 dimensions(1) = new_numel; | |
4755 | 1985 } |
4517 | 1986 } |
1987 } | |
4755 | 1988 else if (num_ones (idx_is_colon) < n_idx) |
1989 { | |
1990 (*current_liboctave_error_handler) | |
1991 ("a null assignment can have only one non-colon index"); | |
1992 } | |
4517 | 1993 } |
1994 } | |
1995 | |
1996 template <class T> | |
1997 Array<T> | |
6881 | 1998 Array<T>::value (void) const |
4517 | 1999 { |
2000 Array<T> retval; | |
2001 | |
2002 int n_idx = index_count (); | |
2003 | |
2004 if (n_idx == 2) | |
2005 { | |
2006 idx_vector *tmp = get_idx (); | |
2007 | |
2008 idx_vector idx_i = tmp[0]; | |
2009 idx_vector idx_j = tmp[1]; | |
2010 | |
2011 retval = index (idx_i, idx_j); | |
2012 } | |
2013 else if (n_idx == 1) | |
2014 { | |
2015 retval = index (idx[0]); | |
2016 } | |
2017 else | |
2018 (*current_liboctave_error_handler) | |
2019 ("Array<T>::value: invalid number of indices specified"); | |
2020 | |
2021 clear_index (); | |
2022 | |
2023 return retval; | |
2024 } | |
2025 | |
2026 template <class T> | |
2027 Array<T> | |
2028 Array<T>::index (idx_vector& idx_arg, int resize_ok, const T& rfv) const | |
2029 { | |
2030 Array<T> retval; | |
2031 | |
5081 | 2032 dim_vector dv = idx_arg.orig_dimensions (); |
2033 | |
2034 if (dv.length () > 2 || ndims () > 2) | |
2035 retval = indexN (idx_arg, resize_ok, rfv); | |
2036 else | |
4517 | 2037 { |
5081 | 2038 switch (ndims ()) |
2039 { | |
2040 case 1: | |
2041 retval = index1 (idx_arg, resize_ok, rfv); | |
2042 break; | |
2043 | |
2044 case 2: | |
2045 retval = index2 (idx_arg, resize_ok, rfv); | |
2046 break; | |
2047 | |
2048 default: | |
2049 (*current_liboctave_error_handler) | |
2050 ("invalid array (internal error)"); | |
2051 break; | |
2052 } | |
4517 | 2053 } |
2054 | |
2055 return retval; | |
2056 } | |
2057 | |
2058 template <class T> | |
2059 Array<T> | |
2060 Array<T>::index1 (idx_vector& idx_arg, int resize_ok, const T& rfv) const | |
2061 { | |
2062 Array<T> retval; | |
2063 | |
5275 | 2064 octave_idx_type len = length (); |
2065 | |
2066 octave_idx_type n = idx_arg.freeze (len, "vector", resize_ok); | |
4517 | 2067 |
2068 if (idx_arg) | |
2069 { | |
2070 if (idx_arg.is_colon_equiv (len)) | |
2071 { | |
2072 retval = *this; | |
2073 } | |
2074 else if (n == 0) | |
2075 { | |
2076 retval.resize_no_fill (0); | |
2077 } | |
2078 else if (len == 1 && n > 1 | |
2079 && idx_arg.one_zero_only () | |
2080 && idx_arg.ones_count () == n) | |
2081 { | |
4548 | 2082 retval.resize_and_fill (n, elem (0)); |
4517 | 2083 } |
2084 else | |
2085 { | |
2086 retval.resize_no_fill (n); | |
2087 | |
5275 | 2088 for (octave_idx_type i = 0; i < n; i++) |
4517 | 2089 { |
5275 | 2090 octave_idx_type ii = idx_arg.elem (i); |
4517 | 2091 if (ii >= len) |
2092 retval.elem (i) = rfv; | |
2093 else | |
2094 retval.elem (i) = elem (ii); | |
2095 } | |
2096 } | |
2097 } | |
2098 | |
2099 // idx_vector::freeze() printed an error message for us. | |
2100 | |
2101 return retval; | |
2102 } | |
2103 | |
2104 template <class T> | |
2105 Array<T> | |
2106 Array<T>::index2 (idx_vector& idx_arg, int resize_ok, const T& rfv) const | |
2107 { | |
2108 Array<T> retval; | |
2109 | |
4548 | 2110 assert (ndims () == 2); |
2111 | |
5275 | 2112 octave_idx_type nr = dim1 (); |
2113 octave_idx_type nc = dim2 (); | |
2114 | |
2115 octave_idx_type orig_len = nr * nc; | |
4517 | 2116 |
4832 | 2117 dim_vector idx_orig_dims = idx_arg.orig_dimensions (); |
2118 | |
5275 | 2119 octave_idx_type idx_orig_rows = idx_arg.orig_rows (); |
2120 octave_idx_type idx_orig_columns = idx_arg.orig_columns (); | |
4517 | 2121 |
2122 if (idx_arg.is_colon ()) | |
2123 { | |
2124 // Fast magic colon processing. | |
2125 | |
5275 | 2126 octave_idx_type result_nr = nr * nc; |
2127 octave_idx_type result_nc = 1; | |
4517 | 2128 |
2129 retval = Array<T> (*this, dim_vector (result_nr, result_nc)); | |
2130 } | |
2131 else if (nr == 1 && nc == 1) | |
2132 { | |
2133 Array<T> tmp = Array<T>::index1 (idx_arg, resize_ok); | |
2134 | |
5275 | 2135 octave_idx_type len = tmp.length (); |
4828 | 2136 |
2137 if (len == 0 && idx_arg.one_zero_only ()) | |
2138 retval = Array<T> (tmp, dim_vector (0, 0)); | |
4876 | 2139 else if (len >= idx_orig_dims.numel ()) |
4832 | 2140 retval = Array<T> (tmp, idx_orig_dims); |
4517 | 2141 } |
2142 else if (nr == 1 || nc == 1) | |
2143 { | |
2144 // If indexing a vector with a matrix, return value has same | |
2145 // shape as the index. Otherwise, it has same orientation as | |
2146 // indexed object. | |
2147 | |
4828 | 2148 Array<T> tmp = Array<T>::index1 (idx_arg, resize_ok); |
4517 | 2149 |
5275 | 2150 octave_idx_type len = tmp.length (); |
4517 | 2151 |
4827 | 2152 if ((len != 0 && idx_arg.one_zero_only ()) |
2153 || idx_orig_rows == 1 || idx_orig_columns == 1) | |
4517 | 2154 { |
4827 | 2155 if (nr == 1) |
2156 retval = Array<T> (tmp, dim_vector (1, len)); | |
4517 | 2157 else |
4827 | 2158 retval = Array<T> (tmp, dim_vector (len, 1)); |
4517 | 2159 } |
4876 | 2160 else if (len >= idx_orig_dims.numel ()) |
4832 | 2161 retval = Array<T> (tmp, idx_orig_dims); |
4517 | 2162 } |
2163 else | |
2164 { | |
5781 | 2165 if (! (idx_arg.one_zero_only () |
2166 && idx_orig_rows == nr | |
2167 && idx_orig_columns == nc)) | |
2168 (*current_liboctave_warning_with_id_handler) | |
2169 ("Octave:fortran-indexing", "single index used for matrix"); | |
4517 | 2170 |
2171 // This code is only for indexing matrices. The vector | |
2172 // cases are handled above. | |
2173 | |
2174 idx_arg.freeze (nr * nc, "matrix", resize_ok); | |
2175 | |
2176 if (idx_arg) | |
2177 { | |
5275 | 2178 octave_idx_type result_nr = idx_orig_rows; |
2179 octave_idx_type result_nc = idx_orig_columns; | |
4517 | 2180 |
2181 if (idx_arg.one_zero_only ()) | |
2182 { | |
2183 result_nr = idx_arg.ones_count (); | |
2184 result_nc = (result_nr > 0 ? 1 : 0); | |
2185 } | |
2186 | |
2187 retval.resize_no_fill (result_nr, result_nc); | |
2188 | |
5275 | 2189 octave_idx_type k = 0; |
2190 for (octave_idx_type j = 0; j < result_nc; j++) | |
4517 | 2191 { |
5275 | 2192 for (octave_idx_type i = 0; i < result_nr; i++) |
4517 | 2193 { |
5275 | 2194 octave_idx_type ii = idx_arg.elem (k++); |
4517 | 2195 if (ii >= orig_len) |
2196 retval.elem (i, j) = rfv; | |
2197 else | |
2198 { | |
5275 | 2199 octave_idx_type fr = ii % nr; |
2200 octave_idx_type fc = (ii - fr) / nr; | |
4517 | 2201 retval.elem (i, j) = elem (fr, fc); |
2202 } | |
2203 } | |
2204 } | |
2205 } | |
2206 // idx_vector::freeze() printed an error message for us. | |
2207 } | |
2208 | |
2209 return retval; | |
2210 } | |
2211 | |
2212 template <class T> | |
2213 Array<T> | |
4530 | 2214 Array<T>::indexN (idx_vector& ra_idx, int resize_ok, const T& rfv) const |
2215 { | |
2216 Array<T> retval; | |
2217 | |
5519 | 2218 dim_vector dv = dims (); |
2219 | |
2220 int n_dims = dv.length (); | |
2221 | |
2222 octave_idx_type orig_len = dv.numel (); | |
4530 | 2223 |
4757 | 2224 dim_vector idx_orig_dims = ra_idx.orig_dimensions (); |
4530 | 2225 |
2226 if (ra_idx.is_colon ()) | |
2227 { | |
4651 | 2228 // Fast magic colon processing. |
2229 | |
2230 retval = Array<T> (*this, dim_vector (orig_len, 1)); | |
4530 | 2231 } |
4651 | 2232 else |
4530 | 2233 { |
5519 | 2234 bool vec_equiv = vector_equivalent (dv); |
2235 | |
2236 if (! vec_equiv | |
4651 | 2237 && ! (ra_idx.is_colon () |
5519 | 2238 || (ra_idx.one_zero_only () && idx_orig_dims == dv))) |
5781 | 2239 (*current_liboctave_warning_with_id_handler) |
2240 ("Octave:fortran-indexing", "single index used for N-d array"); | |
4530 | 2241 |
5519 | 2242 octave_idx_type frozen_len |
2243 = ra_idx.freeze (orig_len, "nd-array", resize_ok); | |
4530 | 2244 |
2245 if (ra_idx) | |
4757 | 2246 { |
5519 | 2247 dim_vector result_dims; |
2248 | |
7321 | 2249 if (vec_equiv && ! orig_len == 1) |
5519 | 2250 { |
2251 result_dims = dv; | |
2252 | |
2253 for (int i = 0; i < n_dims; i++) | |
2254 { | |
2255 if (result_dims(i) != 1) | |
2256 { | |
2257 // All but this dim should be one. | |
2258 result_dims(i) = frozen_len; | |
2259 break; | |
2260 } | |
2261 } | |
2262 } | |
2263 else | |
2264 result_dims = idx_orig_dims; | |
4530 | 2265 |
2266 if (ra_idx.one_zero_only ()) | |
2267 { | |
4651 | 2268 result_dims.resize (2); |
5275 | 2269 octave_idx_type ntot = ra_idx.ones_count (); |
4651 | 2270 result_dims(0) = ntot; |
2271 result_dims(1) = (ntot > 0 ? 1 : 0); | |
4530 | 2272 } |
2273 | |
4673 | 2274 result_dims.chop_trailing_singletons (); |
2275 | |
4530 | 2276 retval.resize (result_dims); |
2277 | |
5275 | 2278 octave_idx_type n = result_dims.numel (); |
4530 | 2279 |
5275 | 2280 octave_idx_type k = 0; |
2281 | |
2282 for (octave_idx_type i = 0; i < n; i++) | |
4530 | 2283 { |
5275 | 2284 octave_idx_type ii = ra_idx.elem (k++); |
4530 | 2285 |
2286 if (ii >= orig_len) | |
5535 | 2287 retval.elem (i) = rfv; |
4530 | 2288 else |
5535 | 2289 retval.elem (i) = elem (ii); |
4530 | 2290 } |
2291 } | |
2292 } | |
2293 | |
2294 return retval; | |
2295 } | |
2296 | |
2297 template <class T> | |
2298 Array<T> | |
4517 | 2299 Array<T>::index (idx_vector& idx_i, idx_vector& idx_j, int resize_ok, |
2300 const T& rfv) const | |
2301 { | |
2302 Array<T> retval; | |
2303 | |
7189 | 2304 if (ndims () != 2) |
2305 { | |
2306 Array<idx_vector> ra_idx (2); | |
2307 ra_idx(0) = idx_i; | |
2308 ra_idx(1) = idx_j; | |
2309 return index (ra_idx, resize_ok, rfv); | |
2310 } | |
4548 | 2311 |
5275 | 2312 octave_idx_type nr = dim1 (); |
2313 octave_idx_type nc = dim2 (); | |
2314 | |
2315 octave_idx_type n = idx_i.freeze (nr, "row", resize_ok); | |
2316 octave_idx_type m = idx_j.freeze (nc, "column", resize_ok); | |
4517 | 2317 |
2318 if (idx_i && idx_j) | |
2319 { | |
2320 if (idx_i.orig_empty () || idx_j.orig_empty () || n == 0 || m == 0) | |
2321 { | |
2322 retval.resize_no_fill (n, m); | |
2323 } | |
2324 else if (idx_i.is_colon_equiv (nr) && idx_j.is_colon_equiv (nc)) | |
2325 { | |
2326 retval = *this; | |
2327 } | |
2328 else | |
2329 { | |
2330 retval.resize_no_fill (n, m); | |
2331 | |
5275 | 2332 for (octave_idx_type j = 0; j < m; j++) |
4517 | 2333 { |
5275 | 2334 octave_idx_type jj = idx_j.elem (j); |
2335 for (octave_idx_type i = 0; i < n; i++) | |
4517 | 2336 { |
5275 | 2337 octave_idx_type ii = idx_i.elem (i); |
4517 | 2338 if (ii >= nr || jj >= nc) |
2339 retval.elem (i, j) = rfv; | |
2340 else | |
2341 retval.elem (i, j) = elem (ii, jj); | |
2342 } | |
2343 } | |
2344 } | |
2345 } | |
2346 | |
2347 // idx_vector::freeze() printed an error message for us. | |
2348 | |
2349 return retval; | |
2350 } | |
2351 | |
2352 template <class T> | |
2353 Array<T> | |
5992 | 2354 Array<T>::index (Array<idx_vector>& ra_idx, int resize_ok, const T& rfv) const |
4517 | 2355 { |
4530 | 2356 // This function handles all calls with more than one idx. |
2357 // For (3x3x3), the call can be A(2,5), A(2,:,:), A(3,2,3) etc. | |
2358 | |
4517 | 2359 Array<T> retval; |
2360 | |
2361 int n_dims = dimensions.length (); | |
2362 | |
4737 | 2363 // Remove trailing singletons in ra_idx, but leave at least ndims |
2364 // elements. | |
2365 | |
5275 | 2366 octave_idx_type ra_idx_len = ra_idx.length (); |
4737 | 2367 |
4887 | 2368 bool trim_trailing_singletons = true; |
5275 | 2369 for (octave_idx_type j = ra_idx_len; j > n_dims; j--) |
4737 | 2370 { |
4887 | 2371 idx_vector iidx = ra_idx (ra_idx_len-1); |
2372 if (iidx.capacity () == 1 && trim_trailing_singletons) | |
4737 | 2373 ra_idx_len--; |
2374 else | |
4887 | 2375 trim_trailing_singletons = false; |
2376 | |
5992 | 2377 if (! resize_ok) |
2378 { | |
2379 for (octave_idx_type i = 0; i < iidx.capacity (); i++) | |
2380 if (iidx (i) != 0) | |
2381 { | |
2382 (*current_liboctave_error_handler) | |
2383 ("index exceeds N-d array dimensions"); | |
2384 | |
2385 return retval; | |
2386 } | |
2387 } | |
4737 | 2388 } |
2389 | |
2390 ra_idx.resize (ra_idx_len); | |
2391 | |
4887 | 2392 dim_vector new_dims = dims (); |
2393 dim_vector frozen_lengths; | |
2394 | |
11698
abe3831a5fc1
shortened empty indexing fix
David Bateman <dbateman@free.fr>
parents:
7321
diff
changeset
|
2395 if (!ra_idx (ra_idx_len - 1).orig_empty () && ra_idx_len < n_dims) |
4887 | 2396 frozen_lengths = short_freeze (ra_idx, dimensions, resize_ok); |
2397 else | |
4517 | 2398 { |
4887 | 2399 new_dims.resize (ra_idx_len, 1); |
2400 frozen_lengths = freeze (ra_idx, new_dims, resize_ok); | |
4530 | 2401 } |
2402 | |
4887 | 2403 if (all_ok (ra_idx)) |
4530 | 2404 { |
4887 | 2405 if (any_orig_empty (ra_idx) || frozen_lengths.any_zero ()) |
2406 { | |
2407 frozen_lengths.chop_trailing_singletons (); | |
2408 | |
2409 retval.resize (frozen_lengths); | |
2410 } | |
2411 else if (frozen_lengths.length () == n_dims | |
2412 && all_colon_equiv (ra_idx, dimensions)) | |
2413 { | |
2414 retval = *this; | |
2415 } | |
2416 else | |
4517 | 2417 { |
4887 | 2418 dim_vector frozen_lengths_for_resize = frozen_lengths; |
2419 | |
2420 frozen_lengths_for_resize.chop_trailing_singletons (); | |
2421 | |
2422 retval.resize (frozen_lengths_for_resize); | |
2423 | |
5275 | 2424 octave_idx_type n = retval.length (); |
2425 | |
2426 Array<octave_idx_type> result_idx (ra_idx.length (), 0); | |
2427 | |
2428 Array<octave_idx_type> elt_idx; | |
2429 | |
2430 for (octave_idx_type i = 0; i < n; i++) | |
4530 | 2431 { |
4887 | 2432 elt_idx = get_elt_idx (ra_idx, result_idx); |
2433 | |
5275 | 2434 octave_idx_type numelem_elt = get_scalar_idx (elt_idx, new_dims); |
4887 | 2435 |
5992 | 2436 if (numelem_elt >= length () || numelem_elt < 0) |
2437 retval.elem (i) = rfv; | |
4887 | 2438 else |
2439 retval.elem (i) = elem (numelem_elt); | |
2440 | |
2441 increment_index (result_idx, frozen_lengths); | |
2442 | |
4517 | 2443 } |
2444 } | |
2445 } | |
2446 | |
2447 return retval; | |
2448 } | |
2449 | |
5775 | 2450 // FIXME -- this is a mess. |
4517 | 2451 |
2452 template <class LT, class RT> | |
2453 int | |
2454 assign (Array<LT>& lhs, const Array<RT>& rhs, const LT& rfv) | |
2455 { | |
6388 | 2456 int n_idx = lhs.index_count (); |
2457 | |
2458 // kluge... | |
2459 if (lhs.ndims () == 0) | |
2460 lhs.resize_no_fill (0, 0); | |
2461 | |
2462 return (lhs.ndims () == 2 | |
2463 && (n_idx == 1 | |
2464 || (n_idx < 3 | |
2465 && rhs.ndims () == 2 | |
2466 && rhs.rows () == 0 && rhs.columns () == 0))) | |
2467 ? assign2 (lhs, rhs, rfv) : assignN (lhs, rhs, rfv); | |
4517 | 2468 } |
2469 | |
2470 template <class LT, class RT> | |
2471 int | |
2472 assign1 (Array<LT>& lhs, const Array<RT>& rhs, const LT& rfv) | |
2473 { | |
2474 int retval = 1; | |
2475 | |
2476 idx_vector *tmp = lhs.get_idx (); | |
2477 | |
2478 idx_vector lhs_idx = tmp[0]; | |
2479 | |
5275 | 2480 octave_idx_type lhs_len = lhs.length (); |
2481 octave_idx_type rhs_len = rhs.length (); | |
2482 | |
5781 | 2483 octave_idx_type n = lhs_idx.freeze (lhs_len, "vector", true); |
4517 | 2484 |
2485 if (n != 0) | |
2486 { | |
6389 | 2487 dim_vector lhs_dims = lhs.dims (); |
2488 | |
6922 | 2489 if (lhs_len != 0 |
2490 || lhs_dims.all_zero () | |
2491 || (lhs_dims.length () == 2 && lhs_dims(0) < 2)) | |
4517 | 2492 { |
6392 | 2493 if (rhs_len == n || rhs_len == 1) |
2494 { | |
6884 | 2495 lhs.make_unique (); |
2496 | |
6392 | 2497 octave_idx_type max_idx = lhs_idx.max () + 1; |
2498 if (max_idx > lhs_len) | |
2499 lhs.resize_and_fill (max_idx, rfv); | |
2500 } | |
2501 | |
2502 if (rhs_len == n) | |
2503 { | |
6884 | 2504 lhs.make_unique (); |
2505 | |
2506 if (lhs_idx.is_colon ()) | |
6392 | 2507 { |
6884 | 2508 for (octave_idx_type i = 0; i < n; i++) |
2509 lhs.xelem (i) = rhs.elem (i); | |
2510 } | |
2511 else | |
2512 { | |
2513 for (octave_idx_type i = 0; i < n; i++) | |
2514 { | |
2515 octave_idx_type ii = lhs_idx.elem (i); | |
2516 lhs.xelem (ii) = rhs.elem (i); | |
2517 } | |
6392 | 2518 } |
2519 } | |
2520 else if (rhs_len == 1) | |
2521 { | |
6884 | 2522 lhs.make_unique (); |
2523 | |
6392 | 2524 RT scalar = rhs.elem (0); |
2525 | |
6884 | 2526 if (lhs_idx.is_colon ()) |
6392 | 2527 { |
6884 | 2528 for (octave_idx_type i = 0; i < n; i++) |
2529 lhs.xelem (i) = scalar; | |
2530 } | |
2531 else | |
2532 { | |
2533 for (octave_idx_type i = 0; i < n; i++) | |
2534 { | |
2535 octave_idx_type ii = lhs_idx.elem (i); | |
2536 lhs.xelem (ii) = scalar; | |
2537 } | |
6392 | 2538 } |
2539 } | |
2540 else | |
2541 { | |
2542 (*current_liboctave_error_handler) | |
2543 ("A(I) = X: X must be a scalar or a vector with same length as I"); | |
2544 | |
2545 retval = 0; | |
2546 } | |
4517 | 2547 } |
6922 | 2548 else |
2549 { | |
2550 (*current_liboctave_error_handler) | |
2551 ("A(I) = X: unable to resize A"); | |
2552 | |
2553 retval = 0; | |
2554 } | |
4517 | 2555 } |
2556 else if (lhs_idx.is_colon ()) | |
2557 { | |
6384 | 2558 dim_vector lhs_dims = lhs.dims (); |
2559 | |
2560 if (lhs_dims.all_zero ()) | |
4517 | 2561 { |
6884 | 2562 lhs.make_unique (); |
2563 | |
4517 | 2564 lhs.resize_no_fill (rhs_len); |
2565 | |
5275 | 2566 for (octave_idx_type i = 0; i < rhs_len; i++) |
6884 | 2567 lhs.xelem (i) = rhs.elem (i); |
4517 | 2568 } |
6553 | 2569 else if (rhs_len != lhs_len) |
4517 | 2570 (*current_liboctave_error_handler) |
2571 ("A(:) = X: A must be the same size as X"); | |
2572 } | |
2573 else if (! (rhs_len == 1 || rhs_len == 0)) | |
2574 { | |
2575 (*current_liboctave_error_handler) | |
2576 ("A([]) = X: X must also be an empty matrix or a scalar"); | |
2577 | |
2578 retval = 0; | |
2579 } | |
2580 | |
2581 lhs.clear_index (); | |
2582 | |
2583 return retval; | |
2584 } | |
2585 | |
2586 #define MAYBE_RESIZE_LHS \ | |
2587 do \ | |
2588 { \ | |
5275 | 2589 octave_idx_type max_row_idx = idx_i_is_colon ? rhs_nr : idx_i.max () + 1; \ |
2590 octave_idx_type max_col_idx = idx_j_is_colon ? rhs_nc : idx_j.max () + 1; \ | |
4517 | 2591 \ |
5275 | 2592 octave_idx_type new_nr = max_row_idx > lhs_nr ? max_row_idx : lhs_nr; \ |
2593 octave_idx_type new_nc = max_col_idx > lhs_nc ? max_col_idx : lhs_nc; \ | |
4517 | 2594 \ |
2595 lhs.resize_and_fill (new_nr, new_nc, rfv); \ | |
2596 } \ | |
2597 while (0) | |
2598 | |
2599 template <class LT, class RT> | |
2600 int | |
2601 assign2 (Array<LT>& lhs, const Array<RT>& rhs, const LT& rfv) | |
2602 { | |
2603 int retval = 1; | |
2604 | |
2605 int n_idx = lhs.index_count (); | |
2606 | |
5275 | 2607 octave_idx_type lhs_nr = lhs.rows (); |
2608 octave_idx_type lhs_nc = lhs.cols (); | |
4517 | 2609 |
5047 | 2610 Array<RT> xrhs = rhs; |
2611 | |
5275 | 2612 octave_idx_type rhs_nr = xrhs.rows (); |
2613 octave_idx_type rhs_nc = xrhs.cols (); | |
5047 | 2614 |
2615 if (xrhs.ndims () > 2) | |
4707 | 2616 { |
5047 | 2617 xrhs = xrhs.squeeze (); |
2618 | |
2619 dim_vector dv_tmp = xrhs.dims (); | |
4709 | 2620 |
4708 | 2621 switch (dv_tmp.length ()) |
4707 | 2622 { |
4708 | 2623 case 1: |
5775 | 2624 // FIXME -- this case should be unnecessary, because |
5047 | 2625 // squeeze should always return an object with 2 dimensions. |
4708 | 2626 if (rhs_nr == 1) |
2627 rhs_nc = dv_tmp.elem (0); | |
2628 break; | |
4709 | 2629 |
4708 | 2630 case 2: |
4707 | 2631 rhs_nr = dv_tmp.elem (0); |
2632 rhs_nc = dv_tmp.elem (1); | |
4708 | 2633 break; |
2634 | |
2635 default: | |
2636 (*current_liboctave_error_handler) | |
2637 ("Array<T>::assign2: Dimension mismatch"); | |
4709 | 2638 return 0; |
4707 | 2639 } |
2640 } | |
4517 | 2641 |
6384 | 2642 bool rhs_is_scalar = rhs_nr == 1 && rhs_nc == 1; |
2643 | |
4517 | 2644 idx_vector *tmp = lhs.get_idx (); |
2645 | |
2646 idx_vector idx_i; | |
2647 idx_vector idx_j; | |
2648 | |
2649 if (n_idx > 1) | |
2650 idx_j = tmp[1]; | |
2651 | |
2652 if (n_idx > 0) | |
2653 idx_i = tmp[0]; | |
2654 | |
2655 if (n_idx == 2) | |
2656 { | |
5781 | 2657 octave_idx_type n = idx_i.freeze (lhs_nr, "row", true); |
2658 octave_idx_type m = idx_j.freeze (lhs_nc, "column", true); | |
4517 | 2659 |
2660 int idx_i_is_colon = idx_i.is_colon (); | |
2661 int idx_j_is_colon = idx_j.is_colon (); | |
2662 | |
6384 | 2663 if (lhs_nr == 0 && lhs_nc == 0) |
2664 { | |
2665 if (idx_i_is_colon) | |
2666 n = rhs_nr; | |
2667 | |
2668 if (idx_j_is_colon) | |
2669 m = rhs_nc; | |
2670 } | |
4517 | 2671 |
2672 if (idx_i && idx_j) | |
2673 { | |
2674 if (rhs_nr == 0 && rhs_nc == 0) | |
2675 { | |
2676 lhs.maybe_delete_elements (idx_i, idx_j); | |
2677 } | |
2678 else | |
2679 { | |
6384 | 2680 if (rhs_is_scalar && n >= 0 && m >= 0) |
4517 | 2681 { |
4534 | 2682 // No need to do anything if either of the indices |
2683 // are empty. | |
2684 | |
2685 if (n > 0 && m > 0) | |
4517 | 2686 { |
6884 | 2687 lhs.make_unique (); |
2688 | |
4534 | 2689 MAYBE_RESIZE_LHS; |
2690 | |
5047 | 2691 RT scalar = xrhs.elem (0, 0); |
4534 | 2692 |
5275 | 2693 for (octave_idx_type j = 0; j < m; j++) |
4517 | 2694 { |
5275 | 2695 octave_idx_type jj = idx_j.elem (j); |
2696 for (octave_idx_type i = 0; i < n; i++) | |
4534 | 2697 { |
5275 | 2698 octave_idx_type ii = idx_i.elem (i); |
6884 | 2699 lhs.xelem (ii, jj) = scalar; |
4534 | 2700 } |
4517 | 2701 } |
2702 } | |
2703 } | |
6072 | 2704 else if ((n == 1 || m == 1) |
2705 && (rhs_nr == 1 || rhs_nc == 1) | |
2706 && n * m == rhs_nr * rhs_nc) | |
2707 { | |
6884 | 2708 lhs.make_unique (); |
2709 | |
6384 | 2710 MAYBE_RESIZE_LHS; |
2711 | |
6072 | 2712 if (n > 0 && m > 0) |
2713 { | |
2714 octave_idx_type k = 0; | |
2715 | |
2716 for (octave_idx_type j = 0; j < m; j++) | |
2717 { | |
2718 octave_idx_type jj = idx_j.elem (j); | |
2719 for (octave_idx_type i = 0; i < n; i++) | |
2720 { | |
2721 octave_idx_type ii = idx_i.elem (i); | |
6884 | 2722 lhs.xelem (ii, jj) = xrhs.elem (k++); |
6072 | 2723 } |
2724 } | |
2725 } | |
2726 } | |
4517 | 2727 else if (n == rhs_nr && m == rhs_nc) |
2728 { | |
6884 | 2729 lhs.make_unique (); |
2730 | |
6384 | 2731 MAYBE_RESIZE_LHS; |
2732 | |
4517 | 2733 if (n > 0 && m > 0) |
2734 { | |
5275 | 2735 for (octave_idx_type j = 0; j < m; j++) |
4517 | 2736 { |
5275 | 2737 octave_idx_type jj = idx_j.elem (j); |
2738 for (octave_idx_type i = 0; i < n; i++) | |
4517 | 2739 { |
5275 | 2740 octave_idx_type ii = idx_i.elem (i); |
6884 | 2741 lhs.xelem (ii, jj) = xrhs.elem (i, j); |
4517 | 2742 } |
2743 } | |
2744 } | |
2745 } | |
2746 else if (n == 0 && m == 0) | |
2747 { | |
6384 | 2748 if (! (rhs_is_scalar || (rhs_nr == 0 || rhs_nc == 0))) |
4517 | 2749 { |
2750 (*current_liboctave_error_handler) | |
2751 ("A([], []) = X: X must be an empty matrix or a scalar"); | |
2752 | |
2753 retval = 0; | |
2754 } | |
2755 } | |
2756 else | |
2757 { | |
2758 (*current_liboctave_error_handler) | |
2759 ("A(I, J) = X: X must be a scalar or the number of elements in I must"); | |
2760 (*current_liboctave_error_handler) | |
2761 ("match the number of rows in X and the number of elements in J must"); | |
2762 (*current_liboctave_error_handler) | |
2763 ("match the number of columns in X"); | |
2764 | |
2765 retval = 0; | |
2766 } | |
2767 } | |
2768 } | |
2769 // idx_vector::freeze() printed an error message for us. | |
2770 } | |
2771 else if (n_idx == 1) | |
2772 { | |
2773 int lhs_is_empty = lhs_nr == 0 || lhs_nc == 0; | |
2774 | |
2775 if (lhs_is_empty || (lhs_nr == 1 && lhs_nc == 1)) | |
2776 { | |
5275 | 2777 octave_idx_type lhs_len = lhs.length (); |
2778 | |
6384 | 2779 idx_i.freeze (lhs_len, 0, true); |
4517 | 2780 |
2781 if (idx_i) | |
2782 { | |
2783 if (rhs_nr == 0 && rhs_nc == 0) | |
2784 { | |
6384 | 2785 lhs.maybe_delete_elements (idx_i); |
4517 | 2786 } |
2787 else | |
2788 { | |
5781 | 2789 if (lhs_is_empty |
2790 && idx_i.is_colon () | |
2791 && ! (rhs_nr == 1 || rhs_nc == 1)) | |
4517 | 2792 { |
5781 | 2793 (*current_liboctave_warning_with_id_handler) |
2794 ("Octave:fortran-indexing", | |
2795 "A(:) = X: X is not a vector or scalar"); | |
2796 } | |
2797 else | |
2798 { | |
2799 octave_idx_type idx_nr = idx_i.orig_rows (); | |
2800 octave_idx_type idx_nc = idx_i.orig_columns (); | |
2801 | |
2802 if (! (rhs_nr == idx_nr && rhs_nc == idx_nc)) | |
2803 (*current_liboctave_warning_with_id_handler) | |
2804 ("Octave:fortran-indexing", | |
2805 "A(I) = X: X does not have same shape as I"); | |
4517 | 2806 } |
2807 | |
5047 | 2808 if (assign1 (lhs, xrhs, rfv)) |
4517 | 2809 { |
5275 | 2810 octave_idx_type len = lhs.length (); |
4517 | 2811 |
2812 if (len > 0) | |
2813 { | |
2814 // The following behavior is much simplified | |
2815 // over previous versions of Octave. It | |
2816 // seems to be compatible with Matlab. | |
2817 | |
2818 lhs.dimensions = dim_vector (1, lhs.length ()); | |
2819 } | |
2820 } | |
2821 else | |
2822 retval = 0; | |
2823 } | |
2824 } | |
2825 // idx_vector::freeze() printed an error message for us. | |
2826 } | |
2827 else if (lhs_nr == 1) | |
2828 { | |
5781 | 2829 idx_i.freeze (lhs_nc, "vector", true); |
4517 | 2830 |
2831 if (idx_i) | |
2832 { | |
2833 if (rhs_nr == 0 && rhs_nc == 0) | |
2834 lhs.maybe_delete_elements (idx_i); | |
2835 else | |
2836 { | |
5047 | 2837 if (assign1 (lhs, xrhs, rfv)) |
4517 | 2838 lhs.dimensions = dim_vector (1, lhs.length ()); |
2839 else | |
2840 retval = 0; | |
2841 } | |
2842 } | |
2843 // idx_vector::freeze() printed an error message for us. | |
2844 } | |
2845 else if (lhs_nc == 1) | |
2846 { | |
5781 | 2847 idx_i.freeze (lhs_nr, "vector", true); |
4517 | 2848 |
2849 if (idx_i) | |
2850 { | |
2851 if (rhs_nr == 0 && rhs_nc == 0) | |
2852 lhs.maybe_delete_elements (idx_i); | |
2853 else | |
2854 { | |
5047 | 2855 if (assign1 (lhs, xrhs, rfv)) |
4517 | 2856 lhs.dimensions = dim_vector (lhs.length (), 1); |
2857 else | |
2858 retval = 0; | |
2859 } | |
2860 } | |
2861 // idx_vector::freeze() printed an error message for us. | |
2862 } | |
2863 else | |
2864 { | |
5781 | 2865 if (! (idx_i.is_colon () |
2866 || (idx_i.one_zero_only () | |
2867 && idx_i.orig_rows () == lhs_nr | |
2868 && idx_i.orig_columns () == lhs_nc))) | |
2869 (*current_liboctave_warning_with_id_handler) | |
2870 ("Octave:fortran-indexing", "single index used for matrix"); | |
4517 | 2871 |
5275 | 2872 octave_idx_type len = idx_i.freeze (lhs_nr * lhs_nc, "matrix"); |
4517 | 2873 |
2874 if (idx_i) | |
2875 { | |
4756 | 2876 if (rhs_nr == 0 && rhs_nc == 0) |
2877 lhs.maybe_delete_elements (idx_i); | |
2878 else if (len == 0) | |
4517 | 2879 { |
6384 | 2880 if (! (rhs_is_scalar || (rhs_nr == 0 || rhs_nc == 0))) |
4517 | 2881 (*current_liboctave_error_handler) |
2882 ("A([]) = X: X must be an empty matrix or scalar"); | |
2883 } | |
2884 else if (len == rhs_nr * rhs_nc) | |
2885 { | |
6884 | 2886 lhs.make_unique (); |
2887 | |
2888 if (idx_i.is_colon ()) | |
4517 | 2889 { |
6884 | 2890 for (octave_idx_type i = 0; i < len; i++) |
2891 lhs.xelem (i) = xrhs.elem (i); | |
2892 } | |
2893 else | |
2894 { | |
2895 for (octave_idx_type i = 0; i < len; i++) | |
2896 { | |
2897 octave_idx_type ii = idx_i.elem (i); | |
2898 lhs.xelem (ii) = xrhs.elem (i); | |
2899 } | |
4517 | 2900 } |
2901 } | |
6384 | 2902 else if (rhs_is_scalar) |
4517 | 2903 { |
6884 | 2904 lhs.make_unique (); |
2905 | |
4517 | 2906 RT scalar = rhs.elem (0, 0); |
2907 | |
6884 | 2908 if (idx_i.is_colon ()) |
4517 | 2909 { |
6884 | 2910 for (octave_idx_type i = 0; i < len; i++) |
2911 lhs.xelem (i) = scalar; | |
2912 } | |
2913 else | |
2914 { | |
2915 for (octave_idx_type i = 0; i < len; i++) | |
2916 { | |
2917 octave_idx_type ii = idx_i.elem (i); | |
2918 lhs.xelem (ii) = scalar; | |
2919 } | |
4517 | 2920 } |
2921 } | |
2922 else | |
2923 { | |
2924 (*current_liboctave_error_handler) | |
2925 ("A(I) = X: X must be a scalar or a matrix with the same size as I"); | |
2926 | |
2927 retval = 0; | |
2928 } | |
2929 } | |
2930 // idx_vector::freeze() printed an error message for us. | |
2931 } | |
2932 } | |
2933 else | |
2934 { | |
2935 (*current_liboctave_error_handler) | |
2936 ("invalid number of indices for matrix expression"); | |
2937 | |
2938 retval = 0; | |
2939 } | |
2940 | |
2941 lhs.clear_index (); | |
2942 | |
2943 return retval; | |
2944 } | |
2945 | |
2946 template <class LT, class RT> | |
2947 int | |
2948 assignN (Array<LT>& lhs, const Array<RT>& rhs, const LT& rfv) | |
2949 { | |
2950 int retval = 1; | |
2951 | |
4746 | 2952 dim_vector rhs_dims = rhs.dims (); |
2953 | |
5275 | 2954 octave_idx_type rhs_dims_len = rhs_dims.length (); |
4746 | 2955 |
2956 bool rhs_is_scalar = is_scalar (rhs_dims); | |
2957 | |
4517 | 2958 int n_idx = lhs.index_count (); |
2959 | |
4745 | 2960 idx_vector *idx_vex = lhs.get_idx (); |
2961 | |
2962 Array<idx_vector> idx = conv_to_array (idx_vex, n_idx); | |
4517 | 2963 |
4743 | 2964 if (rhs_dims_len == 2 && rhs_dims(0) == 0 && rhs_dims(1) == 0) |
4517 | 2965 { |
2966 lhs.maybe_delete_elements (idx, rfv); | |
2967 } | |
5285 | 2968 else if (n_idx == 0) |
2969 { | |
2970 (*current_liboctave_error_handler) | |
2971 ("invalid number of indices for matrix expression"); | |
2972 | |
2973 retval = 0; | |
2974 } | |
4657 | 2975 else if (n_idx == 1) |
4517 | 2976 { |
4657 | 2977 idx_vector iidx = idx(0); |
6884 | 2978 int iidx_is_colon = iidx.is_colon (); |
2979 | |
2980 if (! (iidx_is_colon | |
5781 | 2981 || (iidx.one_zero_only () |
2982 && iidx.orig_dimensions () == lhs.dims ()))) | |
2983 (*current_liboctave_warning_with_id_handler) | |
2984 ("Octave:fortran-indexing", "single index used for N-d array"); | |
4657 | 2985 |
5275 | 2986 octave_idx_type lhs_len = lhs.length (); |
2987 | |
2988 octave_idx_type len = iidx.freeze (lhs_len, "N-d arrray"); | |
4657 | 2989 |
2990 if (iidx) | |
4533 | 2991 { |
4657 | 2992 if (len == 0) |
4656 | 2993 { |
5039 | 2994 if (! (rhs_dims.all_ones () || rhs_dims.any_zero ())) |
4743 | 2995 { |
2996 (*current_liboctave_error_handler) | |
2997 ("A([]) = X: X must be an empty matrix or scalar"); | |
2998 | |
2999 retval = 0; | |
3000 } | |
4657 | 3001 } |
3002 else if (len == rhs.length ()) | |
3003 { | |
6884 | 3004 lhs.make_unique (); |
3005 | |
3006 if (iidx_is_colon) | |
4656 | 3007 { |
6884 | 3008 for (octave_idx_type i = 0; i < len; i++) |
3009 lhs.xelem (i) = rhs.elem (i); | |
3010 } | |
3011 else | |
3012 { | |
3013 for (octave_idx_type i = 0; i < len; i++) | |
3014 { | |
3015 octave_idx_type ii = iidx.elem (i); | |
3016 | |
3017 lhs.xelem (ii) = rhs.elem (i); | |
3018 } | |
4656 | 3019 } |
3020 } | |
4716 | 3021 else if (rhs_is_scalar) |
4657 | 3022 { |
3023 RT scalar = rhs.elem (0); | |
3024 | |
6884 | 3025 lhs.make_unique (); |
3026 | |
3027 if (iidx_is_colon) | |
4657 | 3028 { |
6884 | 3029 for (octave_idx_type i = 0; i < len; i++) |
3030 lhs.xelem (i) = scalar; | |
3031 } | |
3032 else | |
3033 { | |
3034 for (octave_idx_type i = 0; i < len; i++) | |
3035 { | |
3036 octave_idx_type ii = iidx.elem (i); | |
3037 | |
3038 lhs.xelem (ii) = scalar; | |
3039 } | |
4657 | 3040 } |
3041 } | |
3042 else | |
3043 { | |
3044 (*current_liboctave_error_handler) | |
4702 | 3045 ("A(I) = X: X must be a scalar or a matrix with the same size as I"); |
3046 | |
4657 | 3047 retval = 0; |
3048 } | |
3049 | |
4656 | 3050 // idx_vector::freeze() printed an error message for us. |
4533 | 3051 } |
4702 | 3052 } |
4743 | 3053 else |
4702 | 3054 { |
4746 | 3055 // Maybe expand to more dimensions. |
3056 | |
3057 dim_vector lhs_dims = lhs.dims (); | |
3058 | |
5275 | 3059 octave_idx_type lhs_dims_len = lhs_dims.length (); |
4746 | 3060 |
3061 dim_vector final_lhs_dims = lhs_dims; | |
3062 | |
3063 dim_vector frozen_len; | |
3064 | |
5275 | 3065 octave_idx_type orig_lhs_dims_len = lhs_dims_len; |
4747 | 3066 |
3067 bool orig_empty = lhs_dims.all_zero (); | |
3068 | |
3069 if (n_idx < lhs_dims_len) | |
4517 | 3070 { |
5052 | 3071 // Collapse dimensions beyond last index. Note that we |
3072 // delay resizing LHS until we know that the assignment will | |
3073 // succeed. | |
4747 | 3074 |
5781 | 3075 if (! (idx(n_idx-1).is_colon ())) |
3076 (*current_liboctave_warning_with_id_handler) | |
3077 ("Octave:fortran-indexing", | |
3078 "fewer indices than dimensions for N-d array"); | |
4747 | 3079 |
3080 for (int i = n_idx; i < lhs_dims_len; i++) | |
3081 lhs_dims(n_idx-1) *= lhs_dims(i); | |
3082 | |
3083 lhs_dims.resize (n_idx); | |
3084 | |
3085 lhs_dims_len = lhs_dims.length (); | |
3086 } | |
3087 | |
3088 // Resize. | |
3089 | |
3090 dim_vector new_dims; | |
3091 new_dims.resize (n_idx); | |
3092 | |
5264 | 3093 if (orig_empty) |
4747 | 3094 { |
5264 | 3095 int k = 0; |
3096 for (int i = 0; i < n_idx; i++) | |
4746 | 3097 { |
4747 | 3098 // If index is a colon, resizing to RHS dimensions is |
3099 // allowed because we started out empty. | |
4746 | 3100 |
5264 | 3101 if (idx(i).is_colon ()) |
3102 { | |
3103 if (k < rhs_dims.length ()) | |
3104 new_dims(i) = rhs_dims(k++); | |
3105 else | |
5379 | 3106 new_dims(i) = 1; |
3107 } | |
3108 else | |
3109 { | |
3110 octave_idx_type nelem = idx(i).capacity (); | |
3111 | |
3112 if (nelem >= 1 | |
6388 | 3113 && ((k < rhs_dims.length () && nelem == rhs_dims(k)) |
3114 || rhs_is_scalar)) | |
5379 | 3115 k++; |
6388 | 3116 else if (! (nelem == 1 || rhs_is_scalar)) |
5264 | 3117 { |
3118 (*current_liboctave_error_handler) | |
5379 | 3119 ("A(IDX-LIST) = RHS: mismatched index and RHS dimension"); |
5264 | 3120 return retval; |
3121 } | |
5379 | 3122 |
6388 | 3123 new_dims(i) = idx(i).orig_empty () ? 0 : idx(i).max () + 1; |
5264 | 3124 } |
4746 | 3125 } |
5264 | 3126 } |
3127 else | |
3128 { | |
3129 for (int i = 0; i < n_idx; i++) | |
4746 | 3130 { |
4747 | 3131 // We didn't start out with all zero dimensions, so if |
3132 // index is a colon, it refers to the current LHS | |
3133 // dimension. Otherwise, it is OK to enlarge to a | |
5264 | 3134 // dimension given by the largest index, but if that |
4898 | 3135 // index is a colon the new dimension is singleton. |
4749 | 3136 |
3137 if (i < lhs_dims_len | |
6481 | 3138 && (idx(i).is_colon () |
3139 || idx(i).orig_empty () | |
3140 || idx(i).max () < lhs_dims(i))) | |
4749 | 3141 new_dims(i) = lhs_dims(i); |
3142 else if (! idx(i).is_colon ()) | |
3143 new_dims(i) = idx(i).max () + 1; | |
3144 else | |
4898 | 3145 new_dims(i) = 1; |
4745 | 3146 } |
4747 | 3147 } |
3148 | |
4749 | 3149 if (retval != 0) |
4747 | 3150 { |
4749 | 3151 if (! orig_empty |
3152 && n_idx < orig_lhs_dims_len | |
3153 && new_dims(n_idx-1) != lhs_dims(n_idx-1)) | |
4702 | 3154 { |
4749 | 3155 // We reshaped and the last dimension changed. This has to |
3156 // be an error, because we don't know how to undo that | |
3157 // later... | |
3158 | |
3159 (*current_liboctave_error_handler) | |
3160 ("array index %d (= %d) for assignment requires invalid resizing operation", | |
3161 n_idx, new_dims(n_idx-1)); | |
3162 | |
3163 retval = 0; | |
4743 | 3164 } |
3165 else | |
3166 { | |
5052 | 3167 // Determine final dimensions for LHS and reset the |
3168 // current size of the LHS. Note that we delay actually | |
3169 // resizing LHS until we know that the assignment will | |
3170 // succeed. | |
3171 | |
4749 | 3172 if (n_idx < orig_lhs_dims_len) |
4743 | 3173 { |
4749 | 3174 for (int i = 0; i < n_idx-1; i++) |
3175 final_lhs_dims(i) = new_dims(i); | |
4747 | 3176 } |
3177 else | |
4749 | 3178 final_lhs_dims = new_dims; |
3179 | |
5837 | 3180 lhs_dims_len = new_dims.length (); |
3181 | |
3182 frozen_len = freeze (idx, new_dims, true); | |
4749 | 3183 |
6141 | 3184 for (int i = 0; i < idx.length (); i++) |
3185 { | |
3186 if (! idx(i)) | |
3187 { | |
3188 retval = 0; | |
3189 lhs.clear_index (); | |
3190 return retval; | |
3191 } | |
3192 } | |
3193 | |
4749 | 3194 if (rhs_is_scalar) |
4747 | 3195 { |
6884 | 3196 lhs.make_unique (); |
3197 | |
5837 | 3198 if (n_idx < orig_lhs_dims_len) |
3199 lhs = lhs.reshape (lhs_dims); | |
3200 | |
5052 | 3201 lhs.resize_and_fill (new_dims, rfv); |
3202 | |
4747 | 3203 if (! final_lhs_dims.any_zero ()) |
3204 { | |
4749 | 3205 RT scalar = rhs.elem (0); |
3206 | |
6388 | 3207 if (n_idx == 1) |
3208 { | |
3209 idx_vector iidx = idx(0); | |
3210 | |
3211 octave_idx_type len = frozen_len(0); | |
3212 | |
6884 | 3213 if (iidx.is_colon ()) |
3214 { | |
3215 for (octave_idx_type i = 0; i < len; i++) | |
3216 lhs.xelem (i) = scalar; | |
3217 } | |
3218 else | |
6388 | 3219 { |
6884 | 3220 for (octave_idx_type i = 0; i < len; i++) |
3221 { | |
3222 octave_idx_type ii = iidx.elem (i); | |
3223 | |
3224 lhs.xelem (ii) = scalar; | |
3225 } | |
6388 | 3226 } |
3227 } | |
3228 else if (lhs_dims_len == 2 && n_idx == 2) | |
4747 | 3229 { |
6388 | 3230 idx_vector idx_i = idx(0); |
3231 idx_vector idx_j = idx(1); | |
3232 | |
3233 octave_idx_type i_len = frozen_len(0); | |
3234 octave_idx_type j_len = frozen_len(1); | |
3235 | |
6884 | 3236 if (idx_i.is_colon()) |
6388 | 3237 { |
6884 | 3238 for (octave_idx_type j = 0; j < j_len; j++) |
6388 | 3239 { |
6884 | 3240 octave_idx_type off = new_dims (0) * |
3241 idx_j.elem (j); | |
3242 for (octave_idx_type i = 0; i < i_len; i++) | |
3243 lhs.xelem (i + off) = scalar; | |
3244 } | |
3245 } | |
3246 else | |
3247 { | |
3248 for (octave_idx_type j = 0; j < j_len; j++) | |
3249 { | |
3250 octave_idx_type off = new_dims (0) * | |
3251 idx_j.elem (j); | |
3252 for (octave_idx_type i = 0; i < i_len; i++) | |
3253 { | |
3254 octave_idx_type ii = idx_i.elem (i); | |
3255 lhs.xelem (ii + off) = scalar; | |
3256 } | |
6388 | 3257 } |
3258 } | |
3259 } | |
3260 else | |
3261 { | |
3262 octave_idx_type n = Array<LT>::get_size (frozen_len); | |
3263 | |
3264 Array<octave_idx_type> result_idx (lhs_dims_len, 0); | |
3265 | |
3266 for (octave_idx_type i = 0; i < n; i++) | |
3267 { | |
3268 Array<octave_idx_type> elt_idx = get_elt_idx (idx, result_idx); | |
3269 | |
6884 | 3270 lhs.xelem (elt_idx) = scalar; |
6388 | 3271 |
3272 increment_index (result_idx, frozen_len); | |
3273 } | |
4747 | 3274 } |
3275 } | |
4743 | 3276 } |
4749 | 3277 else |
3278 { | |
3279 // RHS is matrix or higher dimension. | |
3280 | |
5275 | 3281 octave_idx_type n = Array<LT>::get_size (frozen_len); |
5264 | 3282 |
3283 if (n != rhs.numel ()) | |
4749 | 3284 { |
3285 (*current_liboctave_error_handler) | |
3286 ("A(IDX-LIST) = X: X must be a scalar or size of X must equal number of elements indexed by IDX-LIST"); | |
3287 | |
3288 retval = 0; | |
3289 } | |
3290 else | |
3291 { | |
6884 | 3292 lhs.make_unique (); |
3293 | |
5837 | 3294 if (n_idx < orig_lhs_dims_len) |
3295 lhs = lhs.reshape (lhs_dims); | |
3296 | |
5052 | 3297 lhs.resize_and_fill (new_dims, rfv); |
3298 | |
4749 | 3299 if (! final_lhs_dims.any_zero ()) |
3300 { | |
6388 | 3301 if (n_idx == 1) |
3302 { | |
3303 idx_vector iidx = idx(0); | |
3304 | |
3305 octave_idx_type len = frozen_len(0); | |
3306 | |
6884 | 3307 if (iidx.is_colon ()) |
3308 { | |
3309 for (octave_idx_type i = 0; i < len; i++) | |
3310 lhs.xelem (i) = rhs.elem (i); | |
3311 } | |
3312 else | |
6388 | 3313 { |
6884 | 3314 for (octave_idx_type i = 0; i < len; i++) |
3315 { | |
3316 octave_idx_type ii = iidx.elem (i); | |
3317 | |
3318 lhs.xelem (ii) = rhs.elem (i); | |
3319 } | |
6388 | 3320 } |
3321 } | |
3322 else if (lhs_dims_len == 2 && n_idx == 2) | |
4749 | 3323 { |
6388 | 3324 idx_vector idx_i = idx(0); |
3325 idx_vector idx_j = idx(1); | |
3326 | |
3327 octave_idx_type i_len = frozen_len(0); | |
3328 octave_idx_type j_len = frozen_len(1); | |
3329 octave_idx_type k = 0; | |
3330 | |
6884 | 3331 if (idx_i.is_colon()) |
6388 | 3332 { |
6884 | 3333 for (octave_idx_type j = 0; j < j_len; j++) |
6388 | 3334 { |
6884 | 3335 octave_idx_type off = new_dims (0) * |
3336 idx_j.elem (j); | |
3337 for (octave_idx_type i = 0; | |
3338 i < i_len; i++) | |
3339 lhs.xelem (i + off) = rhs.elem (k++); | |
6388 | 3340 } |
3341 } | |
6884 | 3342 else |
3343 { | |
3344 for (octave_idx_type j = 0; j < j_len; j++) | |
3345 { | |
3346 octave_idx_type off = new_dims (0) * | |
3347 idx_j.elem (j); | |
3348 for (octave_idx_type i = 0; i < i_len; i++) | |
3349 { | |
3350 octave_idx_type ii = idx_i.elem (i); | |
3351 lhs.xelem (ii + off) = rhs.elem (k++); | |
3352 } | |
3353 } | |
3354 } | |
3355 | |
6388 | 3356 } |
3357 else | |
3358 { | |
3359 n = Array<LT>::get_size (frozen_len); | |
3360 | |
3361 Array<octave_idx_type> result_idx (lhs_dims_len, 0); | |
3362 | |
3363 for (octave_idx_type i = 0; i < n; i++) | |
3364 { | |
3365 Array<octave_idx_type> elt_idx = get_elt_idx (idx, result_idx); | |
3366 | |
6884 | 3367 lhs.xelem (elt_idx) = rhs.elem (i); |
6388 | 3368 |
3369 increment_index (result_idx, frozen_len); | |
3370 } | |
4749 | 3371 } |
3372 } | |
3373 } | |
3374 } | |
4743 | 3375 } |
4517 | 3376 } |
4745 | 3377 |
5632 | 3378 lhs.clear_index (); |
3379 | |
5052 | 3380 if (retval != 0) |
5516 | 3381 lhs = lhs.reshape (final_lhs_dims); |
4517 | 3382 } |
3383 | |
5052 | 3384 if (retval != 0) |
3385 lhs.chop_trailing_singletons (); | |
4757 | 3386 |
4517 | 3387 lhs.clear_index (); |
3388 | |
3389 return retval; | |
3390 } | |
3391 | |
3392 template <class T> | |
3393 void | |
3933 | 3394 Array<T>::print_info (std::ostream& os, const std::string& prefix) const |
3395 { | |
3396 os << prefix << "rep address: " << rep << "\n" | |
3397 << prefix << "rep->len: " << rep->len << "\n" | |
3398 << prefix << "rep->data: " << static_cast<void *> (rep->data) << "\n" | |
3399 << prefix << "rep->count: " << rep->count << "\n"; | |
4513 | 3400 |
3401 // 2D info: | |
3402 // | |
4657 | 3403 // << pefix << "rows: " << rows () << "\n" |
4513 | 3404 // << prefix << "cols: " << cols () << "\n"; |
3933 | 3405 } |
3406 | |
237 | 3407 /* |
3408 ;;; Local Variables: *** | |
3409 ;;; mode: C++ *** | |
3410 ;;; End: *** | |
3411 */ |